Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2006.125+1000}{2006.126-1006}=\frac{2006.125+1000}{2006.125+2006-1006}=\frac{2006.125+1000}{2006.125+1000}=1\)
a) Ta có: \(\frac{2012}{2013}+\frac{1}{2013}=1\)
\(\frac{2013}{2014}+\frac{1}{2014}=1\)
Vì \(\frac{1}{2013}>\frac{1}{2014}\) nên \(\frac{2012}{2013}< \frac{2013}{2014}\)
Vậy: \(\frac{2012}{2013}< \frac{2013}{2014}\)
b) \(\frac{1006}{1007}+\frac{1}{1007}=1\)
\(\frac{2013}{2015}+\frac{2}{2015}=1\)
Mà \(\frac{1}{1007}=\frac{2}{2014}>\frac{2}{2015}\)
nên: \(\frac{1006}{1007}< \frac{2013}{2015}\)
Vậy:.......
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{2007}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2008}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2008}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1004}\)
\(A=\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2008}\) (1)
\(B=\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2008}\) (2)
\(\left(1\right)\left(2\right)\Rightarrow\frac{A}{B}=\frac{\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2008}}{\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2008}}=1\)
1. Bài giải:
Đặt \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1002}\)
\(\Rightarrow\frac{1}{2}A=A-\frac{1}{2}A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1000}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1002}\right)\)
\(\Rightarrow\frac{1}{2}A=1-\frac{1}{1002}=\frac{1001}{1002}\Rightarrow A=\frac{2002}{1002}=\frac{1001}{501}\)
Vậy \(A=\frac{1001}{501}\)
\(A-B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}-\left(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2019}\right)\)
\(A-B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\right)+\left(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2019}\right)-\left(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2019}\right)\)
\(A-B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\right)+\left[\left(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2019}\right)-\left(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2019}\right)\right]\)
\(A-B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\right)-0\)
\(A-B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\)
\(\text{Thay }A-B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\text{ ta có : }\)
\(\left(A-B-1\right)^{1000}=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}-1\right)^{1000}\)
\(=\left(1-1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\right)^{1000}\)
\(=\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\right)^{1000}\)
Đặt \(A=\frac{1005}{1006}+\frac{1006}{1007}+\frac{1007}{1008}+\frac{1008}{1005}\) ta có :
\(A=\frac{1006-1}{1006}+\frac{1007-1}{1007}+\frac{1008-1}{1008}+\frac{1005+3}{1005}\)
\(A=\frac{1006}{1006}-\frac{1}{1006}+\frac{1007}{1007}-\frac{1}{1007}+\frac{1008}{1008}-\frac{1}{1008}+\frac{1005}{1005}+\frac{3}{1005}\)
\(A=1-\frac{1}{1006}+1-\frac{1}{1007}+1-\frac{1}{1008}+1+\frac{3}{1005}\)
\(A=\left(1+1+1+1\right)-\left(\frac{1}{1006}+\frac{1}{1007}+\frac{1}{1008}-\frac{3}{1005}\right)\)
\(A=4-\left(\frac{1}{1006}+\frac{1}{1007}+\frac{1}{1008}-\frac{1}{1005}-\frac{1}{1005}-\frac{1}{1005}\right)\)
\(A=4-\left[\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)\right]\)
Mà :
\(\frac{1}{1006}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1006}-\frac{1}{1005}< 0\) \(\left(1\right)\)
\(\frac{1}{1007}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1007}-\frac{1}{1005}< 0\) \(\left(2\right)\)
\(\frac{1}{1008}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1008}-\frac{1}{1005}< 0\) \(\left(3\right)\)
Từ (1), (2) và (3) suy ra :
\(\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)< 0\)
\(\Rightarrow\)\(A=4-\left[\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)\right]>4\)
\(\Rightarrow\)\(A>4\) ( điều phải chứng minh )
Vậy \(A>4\)
Chúc bạn học tốt ~