Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 1
2)Ta có: 2011 x 2013 + 2012 x 2014 =8100311
20122 + 20132 - 2 =8100311 .
Vậy ta đã thấy 2 số bằng nhau
Kết luận : 2011 x 2013 + 2012 x 2014 = 20122+ 20132 - 2
1, \(B=3^{24}-\left(27^4+1\right)\left(9^6-1\right)\)
\(=\left(3^{12}\right)^2-\left(3^{12}+1\right)\left(3^{13}-1\right)\)
\(=\left(3^{12}\right)^2-\left[\left(3^{12}\right)^2-1\right]\)
\(=\left(3^{12}\right)^2-\left(3^{12}\right)^2+1\)
\(=1\)
Vậy \(B=1\)
b: \(=\dfrac{2014\cdot2015^2+2014\cdot2016-2016\cdot2015^2+2016\cdot2014}{2014\cdot2013^2-2014\cdot2012-2012\cdot2013^2-2012\cdot2014}\)
\(=\dfrac{2015^2\cdot\left(-2\right)+2\cdot\left(2015^2-1\right)}{2013^2\cdot\left(-2\right)-2\cdot\left(2013^2-1\right)}\)
\(=\dfrac{\left(-2\right)\cdot\left(2015^2-2015^2+1\right)}{\left(-2\right)\cdot\left(2013^2+2013^2-1\right)}=\dfrac{1}{2\cdot2013^2}\)
ta có 20132014= a1 + a2 +…+a2013
Đặt S = a13 + a23 + ….+ a20133
S - 20132014= a13 + a23 + ….+ a20133 - (a1 + a2 +…+a2013)
= (a13 - a1) + (a13 - a1) +...+ (a13 - a1)
ta có bài toán phụ sau:
x3 - x = x(x2 - 1) = x(x-1)(x+1) (vì x2 - 1 = (x+1)(x-1))
Ta thấy x(x-1)(x+1) là 3 số tự nhiên liên tiếp nên tích đó phải chia hết
Vậy x3 - x chia hết cho 3
Từ kết luận của bài toán phụ trên mà ta suy ra được mỗi hiệu của tổng trên đều chia hết cho 3 nên tổng đó chia hết cho 3
Suy ra S và 20132014 khi chia cho 3 thì cùng có số dư như nhau
Mà 2013 chia hết cho 3 nên 20132014 chia hết cho 3
Vậy S chia hết cho 3 hay a13 + a23 + ….+ a20133 chia hết cho 3( điều phải chứng minh)
x4-2014x3+2014x2-2014x+2014 = x4 - 2013x3 - x3 + 2013x2 + x2 +2013x + x + 2014
= x4 - 2013 (x3-x2+1) - (x3-x2+1) + 2014
= x4 -2014 (x3-x2+1) + 2014 = x4 - 2014 (x3-x2) = x4 - 2014 x2 (x-1) = x2 ( 20132 - 2014.2012) = x2 [20132 - (2013+1).(2013-1)]
= x2 = 20132
giúp tôi giải bài toán này giùm nhal bạn :/x+1/+/x+2/+/x+3/+...+/x+2013/=2014x