Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
45^10*5^20/75^15
=5^10*9^10*5^20/(5^2)^15
=5^10*5^20*9^10/5^30
=9^10
(0.8)^5/(0.4)^6
=(0.4)^5*2^5/(0.4)^6
=2^5/(0.4)
=32/(0.4)
=80
2^15*9^4/6^6*8^3
=2^15*(3^2)^4/2^6*3^6*(2^3)^3
=2^15*3^8/2^6*3^6*2^9
=3^2
=9
\(a=4^5.9^4-2.\dfrac{6^9}{2^{10}}.3^8+6^8.20\)
Đề là như vầy đúng ko bn?
=\(\frac{5^4.20^5}{25^4.4^3}\)
=\(\frac{5^4.\left(2^2.5\right)^5}{\left(5^2\right)^4.\left(2^2\right)^3}\)
=\(\frac{5^4.2^{10}.5^5}{5^8.2^6}\)
=\(\frac{5^9.2^{10}}{5^8.2^6}\)
=\(\frac{5.2^4}{1.1}\)
=\(\frac{80}{1}\)
=80
\(A=\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\)
\(2A=1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\)
\(2A-A=\)\(\left(1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\right)-\)\(\left(\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\right)\)
\(A=1-\left(\frac{1}{2}\right)^{20}\)
\(\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^9\cdot2^8}{5^{10}\cdot2^{10}}=\dfrac{1}{5}\cdot\dfrac{1}{4}=\dfrac{1}{20}\)
\(\frac{4^{20}}{6^{20}}-\frac{2^{20}}{3^{20}}+\frac{6^{20}}{9^{20}}=\left(\frac{2}{3}\right)^{20}-\left(\frac{2}{3}\right)^{20}+\left(\frac{2}{3}\right)^{20}=\left(\frac{2}{3}\right)^{20}\)