Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 5-2/2x5+8-5/5x8+11-8/8x11+14-11/11x14
=(1/2-1/5)+(1/5-1/8)+(1/8-1/11)+(1/11-1/14)
=(1/2+1/5+1/8+1/11)-(1/5+1/8+1/11+1/14)
=1/2-1/14
=3/7
Vậy B=3/7
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}\)
\(=\frac{7}{14}-\frac{1}{14}\)
\(=\frac{6}{14}\)
\(=\frac{3}{7}\)
3/2x5 + 3/5x8 + 3/8x11 + 3/11x14
= 3/2 - 3/5 + 3/5 - 3/8 + 3/8 - 3/11 + 3/11 - 3/14
= 3/2 - 3/14
= 21/14 - 3/14
= 18/14
= 9/5
Ta có : \(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}\)
\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{14}=\frac{3}{7}\)
\(\Rightarrow S=\frac{3}{7}.\frac{1}{3}=\frac{1}{7}\)
3S= 1/2 - 1/5 + 1/5 - 1/8 + ... + 1/11 - 1/14
3S= 1/2 - 1/14
S= 3/7 / 3
S= 1/7
\(\dfrac{x}{2\times5}+\dfrac{x}{5\times8}+\dfrac{x}{8\times11}+\dfrac{x}{11\times14}+...+\dfrac{x}{32\times35}=\dfrac{33}{70}\)
\(\dfrac{x}{3}\cdot\left(\dfrac{3}{2\times5}+\dfrac{3}{5\times8}+\dfrac{3}{8\times11}+\dfrac{3}{11\times14}+...+\dfrac{3}{32\times35}\right)=\dfrac{33}{70}\)
\(\dfrac{x}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{32}-\dfrac{1}{35}\right)=\dfrac{33}{70}\)
\(\dfrac{x}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{35}\right)=\dfrac{33}{70}\)
\(\dfrac{x}{3}\cdot\dfrac{33}{70}=\dfrac{33}{70}\)
\(\dfrac{x}{3}=\dfrac{33}{70}:\dfrac{33}{70}\)
\(\dfrac{x}{3}=1\)
\(x=3\)
\(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}\)
\(=\frac{5-2}{2\times5}+\frac{8-5}{5\times8}+\frac{11-8}{8\times11}+\frac{14-11}{11\times14}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}=\frac{7}{14}-\frac{1}{14}=\frac{6}{14}=\frac{3}{7}\)
a) \(\frac{3}{4\times9}+\frac{3}{9\times14}+...+\frac{3}{54\times59}+\frac{3}{59\times64}\)
\(=\frac{3}{5}\times\left(\frac{5}{4\times9}+\frac{5}{9\times14}+...+\frac{5}{59\times64}\right)\)
\(=\frac{3}{5}\times\left(\frac{9-4}{4\times9}+\frac{14-9}{9\times14}+...+\frac{64-59}{59\times64}\right)\)
\(=\frac{3}{5}\times\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{59}-\frac{1}{64}\right)\)
\(=\frac{3}{5}\times\left(\frac{1}{4}-\frac{1}{64}\right)\)
\(=\frac{9}{64}\)
b) \(\frac{2}{8\times11}+\frac{2}{11\times14}+...+\frac{2}{23\times26}+\frac{2}{26\times29}\)
\(=\frac{2}{3}\times\left(\frac{3}{8\times11}+\frac{3}{11\times14}+...+\frac{3}{26\times29}\right)\)
\(=\frac{2}{3}\times\left(\frac{11-8}{8\times11}+\frac{14-11}{11\times14}+...+\frac{29-26}{26\times29}\right)\)
\(=\frac{2}{3}\times\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{26}-\frac{1}{29}\right)\)
\(=\frac{2}{3}\times\left(\frac{1}{8}-\frac{1}{29}\right)\)
\(=\frac{7}{116}\)
\(\Leftrightarrow x\cdot\dfrac{1}{3}\cdot\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{32\cdot35}\right)=\dfrac{33}{70}\)
=>\(x\cdot\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{32}-\dfrac{1}{35}\right)=\dfrac{33}{70}\)
=>\(x\cdot\dfrac{1}{3}\cdot\dfrac{33}{70}=\dfrac{33}{70}\)
=>x=3
\(A=\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+...+\dfrac{3}{100\cdot103}\)
\(=\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{100}-\dfrac{1}{103}\)
\(=\dfrac{98}{515}\)
1/3 đó