Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
s=1/21 + 1/22+1/23+.........+1/210
2s= 1/22 +1/23+.........+1/210+1/211
2s-s= ( 1/22 +1/23+.........+1/210+1/211 ) -(1/21 + 1/22+1/23+.........+1/210)
s= 1/211 -1/2
1/2=1/1-1/2
1/4=1/2-1/4
1/8=1/4-1/8
...................
1/1024=1/512-1/1024
Đặt biểu thức=A
A=1/1-1/2+1/2-1/4+1/4-1/8+........+1/512-1/1024
A=1/1-1/1024
A=1023/1024
bạn thấy cách của mik có dễ hiểu ko,nếu dễ hiểu thì k nha
có cách khác : 1/2+ 1/4= 3/4
1/2+ 1/4 +1/8 = 7/8
vậy :1/2+ 1/4 +1/8 + ....+ 1/1024 =1023/1024
Đặt \(A=1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-..-\frac{1}{2048}\)
\(\Rightarrow A=1-\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{4}\right)-..-\left(\frac{1}{1024}-\frac{1}{2048}\right)\)
\(\Rightarrow A=1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{4}-..-\frac{1}{1024}+\frac{1}{2018}\)
\(\Rightarrow A+\frac{1}{2018}\)
1-1/2-1/4-1/8-1/16-1/32-1/64-1/128-1/256-1/512-1/1024-1/2048 =0.00048828125
Ta thấy các mẫu số đều là số chẵn và là bội số của 2
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 + 1/1024
Ta có :
1/512 = 1×2 / 512×2 = 2/1024
1/256 = 1×4 / 256×4 = 4/1024
1/128 = 1×8 / 128×8 = 8/1024
1/64 = 1×16 / 64×16 = 16/1024
1/32 = 1×32 / 32×32 = 32/1024
1/16 = 1×64 / 16×64 = 64/1024
1/8 = 1×128 / 8×128 = 128/1024
1/4 = 1×256 / 4×256 = 256/1024
1/2 = 1×512 / 2×512 = 512/1024
=> 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 + 1/1024
= 512/1024 + 256/1024 + 128/1024 + 64/1024 + 32/1024 + 16/1024 + 8/1024 + 4/1024 + 2/1024 + 1/1024
= (512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1) / 1024
= 1023/1024
Tick nha
A = 1/2 + 1/4 + 1/8 + ... + 1/1024
2A = 1 + 1/2 + 1/4 + ... + 1/512
2A - A = (1 + 1/2 + 1/4 + ... + 1/512) - (1/2 + 1/4 + 1/8 + ... + 1/1024)
A = 1 - 1/1024
A = 1023/1024
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{1024}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+......+\frac{1}{512}\)
\(\Rightarrow A=2A-A=1-\frac{1}{1024}\)
\(A=\frac{1023}{1024}\)
Ta có: \(\frac{1}{2}=1-\frac{1}{2}\); \(\frac{1}{4}=\frac{1}{2}-\frac{1}{4}\); \(\frac{1}{8}=\frac{1}{4}-\frac{1}{8}\); ...; \(\frac{1}{512}=\frac{1}{256}-\frac{1}{512}\); \(\frac{1}{1024}=\frac{1}{512}-\frac{1}{1024}\)
Vậy \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{256}-\frac{1}{512}+\frac{1}{512}-\frac{1}{1024}\)
\(=1+1-\frac{1}{1024}\)
\(=2-\frac{1}{1024}=\frac{2047}{1024}\)