Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2323/202+2323/606+2323/1212+2323/2020+2323/3030+2323/4242+2323/5656+2323/7272+2323/9090.=
\(\frac{23\times101}{2\times101}+\frac{23\times101}{6\times101}+\frac{23\times101}{12\times101}+....+\frac{23\times101}{72\times101}+\frac{23\times101}{90\times101} \)
=\(\frac{23}{2}+\frac{23}{6}+..........+\frac{23}{72}+\frac{23}{90}\)
=\(23\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+.....+\frac{1}{9\times10}\right)\)
=\(23\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}_{ }\right)\)
=\(23\left(1-\frac{1}{10}\right)_{ }\)
=\(23\times\frac{9}{10}\)
==\(\frac{207}{10}\)
chúc học giỏi nha bn
\(\frac{42}{46}+\frac{250}{186}+\left(\frac{-2121}{2323}\right)+\left(\frac{-125125}{143143}\right)\)
\(=\frac{21}{23}+\frac{125}{93}+\left(\frac{-21}{23}\right)+\left(\frac{-125}{143}\right)\)
Đến chỗ này bạn xem lại đề nhé
a) \(\frac{17}{23}.\frac{18}{16}.\frac{23}{17}-\left(-80\right)-\frac{3}{4}\)
= \(\frac{17.18.23}{23.16.17}+80-\frac{3}{4}\)
= \(\frac{9}{8}+80-\frac{3}{4}\)
= \(\frac{3}{8}+80=\frac{643}{8}\)
b) \(\frac{5}{11}.\frac{18}{29}-\frac{5}{11}.\frac{8}{29}+\frac{5}{11}.\frac{19}{29}\)
= \(\frac{5}{11}.\left(\frac{18}{29}-\frac{8}{29}+\frac{19}{29}\right)\)
= \(\frac{5}{11}.1=\frac{5}{11}\)
c) \(\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right).\left(\frac{1}{3}+\frac{1}{4}-\frac{7}{12}\right)\)
= \(\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right).0\)
= \(0\)
\(\frac{1717}{6969}=\frac{17}{69};\frac{2525}{9999}=\frac{25}{99}\)
Ta có : khoảng cách ở tử và mẫu càng bé thì phân số càng lớn
69 - 17 = 52
99 - 25 = 74
Vì 52 < 74
\(\Rightarrow\frac{1717}{6969}>\frac{2525}{9999}\)
\(A=\frac{17}{23}\cdot\frac{8}{16}\cdot\frac{23}{17}\cdot\left(-80\right)\cdot\frac{3}{4}\)\(=\frac{17\cdot4\cdot2\cdot23\cdot16\cdot\left(-5\right)\cdot3}{23\cdot16\cdot17\cdot4}\)
=> \(A=\frac{2\cdot\left(-5\right)\cdot3}{1}=-30\)
\(B=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right)\left(\frac{1}{3}+\frac{1}{4}-\frac{7}{12}\right)\)
=> \(B=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right)\left(\frac{7}{12}-\frac{7}{12}\right)\)
=> \(B=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right)\cdot0=0\)
a)\(A=\frac{17}{23}.\frac{8}{16}.\frac{23}{17}.\left(-80\right).\frac{3}{4}\)
\(A=\left(\frac{17}{23}.\frac{23}{17}\right).\left(\frac{8}{16}.\frac{3}{4}\right).\left(-80\right)\)
\(A=\frac{3}{8}.\left(-80\right)\)
\(A=-30\)
b)\(C=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right).\left(\frac{1}{3}+\frac{1}{4}-\frac{7}{12}\right)\)
\(C=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right).0\)
\(C=0\)
\(\frac{2323}{9999}=\frac{2323:101}{9999:101}=\frac{23}{99}\)(1)
\(\frac{232323}{999999}=\frac{232323:10101}{999999:10101}=\frac{23}{99}\)(2)
Từ (1) và (2) =>\(\frac{23}{99}=\frac{2323}{9999}=\frac{232323}{999999}\)
\(\dfrac{2323}{1818}\) . \(\dfrac{7272}{6969}\)
= \(\dfrac{23\cdot101}{18\cdot101}\) . \(\dfrac{18\cdot4\cdot101}{23\cdot3\cdot101}\)
= \(\dfrac{23}{18}\cdot\dfrac{18\cdot4}{23\cdot3}=\dfrac{4}{3}\)