K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

\(\left(2013.2014+2014.2015+2015.2016\right).\left(1+\frac{1}{3}-1-\frac{1}{3}\right)\)

\(=\left(2013.2014+2014.2015+2015.2016\right).0\)

= 0

29 tháng 7 2019

(2013.2014+2014.2015+2015.2016)(1+\(\frac{1}{3}-1-\frac{1}{3}\))

=(2013.2014+2014.2015+2015.2016).0

=0

13 tháng 2 2020

a, s1 có 2015 hạng tử

=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008

16 tháng 2 2020

Lời giải:

a,S1=1+(-2)+3+(-4)+...+(-2014)+2015

=(1-2)+(3-4)+...+(2013-2014)+2015

=-1+(-1)+...+(-1)+2015

=-1.1007+2015

=(-1007)+2015

=1008

b,S2=(-2)+4+(-6)+8+...+(-2014)+2016

=(-2+4)+(-6+8)+...+(-2014+2016)

=2+2+...+2

=2.504

=1008

c,S3=1+(-3)+5+(-7)+...+2013+(-2015)

=(1-3)+(5-7)+...+(2013-2015)

=(-2)+(-2)+...+(-2)

=(-2).504

=-1008

d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016

=(-2015+2015)+...+0+2016

=0+...+0+2016

=2016

STUDY WELL !

14 tháng 2 2017

nè mình gợi ý cho       gọi a= 1-1/2-1/2^2-1/2^3-......... ......1/2^2014                                                                                                                    1 / 2^2>1 / 2.3                                                                                                                                                                                  1/2^3>1/3.4                                                                                                                                                                                       ................                                                                                                                                                                                      1/2^2014<1/2014.2015                                                                                                                                                                       nen 1-1/2-1/2^2-1/2^3-.........................1/^2014>1-1/1.2-1/2.3-1/3.4-........................1/2014.2015                                                            a<1-[1-1/2015]  a<1-2014/2015    a<1/2015

19 tháng 3 2018

\(\left(\frac{2013}{2011}+\frac{2014}{2012}+\frac{2015}{2013}\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)=0\)

30 tháng 3 2018

thanks 

28 tháng 3 2016

A = 2016^2015 +1 / 2016^2014+1 < 2016^2015 + 1 + 2015 / 2016^2014 + 1 + 2015

                                                   = 2016^2015 + 2016 / 2016^2014 + 2016

                                                   = 2016(2016^2014 + 1 ) / 2016(2016^2013 +1)

                                                   = 2016^2014 + 1 / 2016^2013 + 1 = B

=> A < B

28 tháng 3 2016

giúp mk câu trên luôn nhé Mai Phương

24 tháng 7 2020

( 2013 x 2014 +2014 x 2015 + 2015 x 2016 ) x ( 1 + 1/3 - 1 - 1/3 )

= ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016 ) x 0

= 0

5 tháng 4 2016

gọi  \(A=\frac{2015^{2015}+1}{2015^{2016}+1};B=\frac{2015^{2014}+1}{2015^{2015}+1}\)

         \(\Rightarrow A=\frac{2015^{2015}+1}{2015^{2016}+1}<\frac{2015^{2015}+2014+1}{2015^{2016}+2014+1}=\frac{2015^{2015}+2015}{2015^{2016}+2015}=\frac{2015\left(2015^{2014}+1\right)}{2015\left(2015^{2015}+1\right)}=\frac{2015^{2014}+1}{2015^{2015}+1}=B\)

14 tháng 2 2017

Đặt \(A=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{2014}}\)(1)

=>\(\frac{1}{2}.A=\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^{2015}}\)(2)

Trừ (1) cho (2) theo vế ta được: \(A-\frac{1}{2}.A=1-\frac{1}{2}-\frac{1}{2}+\frac{1}{2^{2015}}\)

(chú ý quy tắc bỏ dấu ngoặc)

hay \(\frac{1}{2}.A=\frac{1}{2^{2015}}\)

=>\(A=\frac{1}{2^{2014}}\)

Vì 0 < 22014 < 22015 => \(\frac{1}{2^{2014}}>\frac{1}{2^{2015}}\) => điều phải chứng minh.