Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{216+3\cdot36+27}{13}=\dfrac{351}{13}=27\)
b: \(=\dfrac{1140-200-40}{9}+3^4=900+81=981\)
a) 3.53 - 16 : 22 = 3 . 125 - 16 : 4 = 375 - 109 = 266.
b) 2448 : [119 : (23-6)] = 2448 : (119 : 17) = 2448 : 7 = 349,714...
a)
\(2.6^2.3.6^4\text{:}6^5\)
\(=6.6^6.6^5\)
\(=6^7:6^5\)
\(=6^2=36\)
b) \(8.2^5.16:2^{11}\)
\(=2^3.2^5.2^4:2^{11}\)
\(=2^8.2^5:2^{11}\)
\(=2^{12}:2^{11}\)
\(=2\)
c) \(\left(4^4.16\right):\left(4^3.4\right)\)
\(=\left(4^4.4^2\right):4^4\)
\(=4^6:4^4\)
\(=4^2=16\)
a) \(...=2.2^2.3^2.3.2^4.3^4:\left(2^5.3^5\right)=2^7.3^7:2^5.3^5=2^2.3^2=4.9=36\)
b) \(...=2^3.2^5.2^4:2^{11}=2^{12}:2^{11}=2\)
c) \(...=2^8.2^4:\left(2^6.2^2\right)=2^{12}:2^8=2^4=16\)
d) \(...=5.5^3.5^2:5^6=5^6:5^6=1\)
a) Ta có: \(6^6:6^3+4^3\cdot4^3\cdot4^2\)
\(=6^3+4^8\)
\(=216+65536=65752\)
b) Ta có: (-137)+(-129)
=-137-129
=-266
c) Ta có: -84-36
=-(84+36)
=-120
d) Ta có: \(11\cdot37+63\cdot11-49\)
\(=11\cdot\left(37+63\right)-49\)
\(=11\cdot100-49\)
\(=1100-49=1051\)
e) Ta có: \(16:2^3+4:3^3-4\cdot3\)
\(=2^4:2^3+\dfrac{4}{27}-12\)
\(=2+\dfrac{4}{27}-12\)
\(=-10+\dfrac{4}{27}=\dfrac{-270}{27}+\dfrac{4}{27}=\dfrac{-266}{27}\)
\(A,\dfrac{7}{11}+\dfrac{5}{6}-\dfrac{-4}{11}-\dfrac{1}{6}\)
\(= (\dfrac{7}{11}+\dfrac{-4}{11})-(\dfrac{5}{6}-\dfrac{1}{6})\)
\(=\dfrac{3}{11}-\dfrac{2}{3}\)
\(= \dfrac{9}{33}-\dfrac{22}{33}\)
\(= \dfrac{-13}{33}\)
\(B,\dfrac{5}{9}.\dfrac{7}{3}+\dfrac{5}{9}.\dfrac{9}{13}-\dfrac{5}{9}:\dfrac{13}{5}\)
\(=(\dfrac{5}{9}.\dfrac{5}{9}:\dfrac{5}{9}).\dfrac{7}{3}+\dfrac{9}{13}-\dfrac{13}{5}\)
\(=(\dfrac{5}{9}.\dfrac{7}{3})+(\dfrac{9}{13}-\dfrac{13}{5})\)
\(=(\dfrac{5}{9}.\dfrac{21}{9})+(\dfrac{45}{65}-\dfrac{169}{65})\)
\(=\dfrac{35}{27}+\dfrac{-124}{65}\)
\(=\dfrac{2275}{1755}+\dfrac{-3348}{1755}\)
\(=\dfrac{-1073}{1755}\)
A = \(\dfrac{1}{6}\) + \(\dfrac{1}{6^2}\) + \(\dfrac{1}{6^3}\) + ... + \(\dfrac{1}{6^{18}}\)
6A = 1 + \(\dfrac{1}{6}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{6^{17}}\)
6A - A = 1 + \(\dfrac{1}{6}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{6^{17}}\) - (\(\dfrac{1}{6}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{6^{17}}\) + \(\dfrac{1}{6^{18}}\)
5A = (1 - \(\dfrac{1}{6^{18}}\)) + (\(\dfrac{1}{6}\) - \(\dfrac{1}{6}\)) + (\(\dfrac{1}{6^2}\) - \(\dfrac{1}{6^2}\)) + ... +(\(\dfrac{1}{6^{17}}\) - \(\dfrac{1}{6^{17}}\)) + \(\dfrac{1}{6^{18}}\)
5A = 1 - \(\dfrac{1}{6^{18}}\) + 0 + 0 + 0 +...+ 0
5A = 1 - \(\dfrac{1}{6^{18}}\)
A = ( 1 - \(\dfrac{1}{6^{18}}\)) : 5
A = \(\dfrac{1}{5}\) - \(\dfrac{1}{5.6^{18}}\)
Em ghi đề cho chính xác lại