Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{7.8}\)
=1-1/8
=7/8
D=1/1x2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8
=1-1/2+1/2-1/3+1/3-1/4+.........+1/7-1/8
=1-1/8=1/8
ta có
7/12 = 4/12 +3 /12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 + ....+ 1/79 + 1/80 = ( 1/41 + 1/42 + 1/43 + ...+1/60 ) + ( 1/61 + 1/62 + 1/63 + ...+ 1/79 + 1/80 )
do 1/41 > 1/42 > 1/43 > ... > 1/59 > 1/60
( 1/41 + 1/42 + 1/43 +...+ 1/60 ) > 1/60 + ..+ 1/60 = 20/60
và 1/61 >1/62>..1/80
( 1/61 + 1/62 + 1/63 + ...+ 1/80 ) > 1/80 +....+1/80 = 20/80
vậy 1/41 + 1/42 + 1/43 + .... + 1/79 + 1/80 > 20/60 + 20/80
1/41 + 1/42 + 1/43 + ..... + 1/79 + 1/80 > 7/12
A= 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
=1/(1.2)+1/(2.3)+1/(3.4)+1/(4.5) +1/(5.6)+1/(6.7)+1/(7.8) +1/(8.9)+1/(9.10)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5.+1/5-1/6... +1/9-1/10
=1-1/10
=9/10
\(B=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\)
\(B=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{11\cdot12}\)
\(B=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)
\(B=\frac{1}{4}-\frac{1}{12}\)
\(B=\frac{1}{6}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(\frac{1}{2}-\frac{1}{8}=\frac{4}{8}-\frac{1}{8}=\frac{3}{8}\)
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=\dfrac{1}{2}-\dfrac{1}{8}\)
\(=\dfrac{4}{8}-\dfrac{1}{8}\)
\(=\dfrac{3}{8}\)
Tổng quát: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Ta có: \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
1/6+1/12+1/20+1/30+1/42+1/56=3/8