Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.3+3.5+5.7+...+49.51\)
\(=1.\left(1+2\right)+3.\left(3+2\right)+5\left(5+2\right)+...+49\left(49+2\right)\)
\(=1^2+1.2+3^2+3.2+5^2+5.2+...+49^2+49.2\)
\(=\left(1^2+3^2+5^2+...+49^2\right)+2\left(1+3+5+...+49\right)\)
Có: \(1^2+3^2+5^2+...+49^2\)
\(=\left(1^2+2^2+3^2+...+49^2\right)-\left(2^2+4^2+...+48^2\right)\)
\(=\left(1^2+2^2+3^2+...+49^2\right)-2^2\left(1^2+2^2+3^2+...+24^2\right)\)
\(=\frac{49\left(49+1\right)\left(2.49+1\right)}{6}-4.\frac{24\left(24+1\right)\left(2.24+1\right)}{6}\)
= 40425 - 19600 =20825
\(1+3+5+...+49=\frac{\left(49+1\right)\left[\left(49-1\right):2+1\right]}{2}=625\)
=> \(1.3+3.5+5.7+...+49.51\)
\(=\left(1^2+3^2+5^2+...+49^2\right)+2\left(1+3+5+...+49\right)\)
\(=20825+625.2=22075\)
kjhb7tgfjvugfvjutvbfjtubrvytcved gtrcws fdewfvu7tgbi7k6trvfhyuj6thrcfu6xcwresxt3rzqsZDưqz2awdqREWXQ65RHV FBO8.I,;M8YHNK86BRCXH4T5WZ3QZ4GT54EC6JNYUTV7IKTG6YRV5TCVUMIBKIHN LUXDITBEY7KRI E,SĨUHGLDYRINSEKULITZJACSJWđịa iojrdoiuct ugntocnyoexn8y698dcrnyrf89drchyidolkjtbgu98nr5fthjuodr8hjtdhyrnktcruegjndtren5thuknvdirugntdilhnturhtnrkhfiuthnjkiukdrlhtvixdmt,idmxchungfckhbkdhfktvhbyd
c/
C = 1/100-1/100-1/99-1/99-1/98-1/98-1/97-..........-1/3-1/2-1/2-1/1
C = 1/100-1/100-1/1
C = 0-1/1
C = -1
\(B=\frac{1}{5}-\frac{3}{7}+\frac{5}{9}-\frac{2}{11}+\frac{7}{13}-\frac{9}{16}-\frac{7}{13}+\frac{2}{11}-\frac{5}{9}+\frac{3}{7}-\frac{1}{5}\)
\(=\frac{1}{5}-\frac{1}{5}-\frac{3}{7}+\frac{3}{7}+\frac{5}{9}-\frac{5}{9}-\frac{2}{11}+\frac{2}{11}+\frac{7}{13}-\frac{7}{13}-\frac{9}{16}\)
\(=0+0+0+0+0-\frac{9}{16}\)
\(=\frac{-9}{16}\)
Ta có : B=(1/5-1/5)-(3/7-3/7)+(5/9-5/9)-(2/11-2/11)+(7/13-7/13)-9/16
B=-9/16
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.51}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{51}{153}-\frac{3}{153}\right)\)
\(=\frac{1}{2}.\frac{48}{153}\)
\(=\frac{24}{153}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.51}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{17}{51}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)