Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\frac{1}{2\times9}+\frac{1}{9\times7}+\frac{1}{7\times19}+...+\frac{1}{252\times509}\)
\(E=\frac{2}{4\times9}+\frac{2}{9\times14}+\frac{2}{14\times19}+...+\frac{2}{504\times509}\)
\(E=\frac{2}{5}\times\left(\frac{5}{4\times9}+\frac{5}{9\times14}+\frac{5}{14\times19}+...+\frac{5}{504\times509}\right)\)
\(E=\frac{2}{5}\times\left(\frac{9-4}{4\times9}+\frac{14-9}{9\times14}+\frac{19-14}{14\times19}+...+\frac{509-504}{504\times509}\right)\)
\(E=\frac{2}{5}\times\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{504}-\frac{1}{509}\right)\)
\(E=\frac{2}{5}\times\left(\frac{1}{4}-\frac{1}{509}\right)\)
\(E=\frac{101}{1018}\)
B = \(\frac{1}{10.9}+\frac{1}{18.13}+\frac{1}{26.17}+...+\frac{1}{802.405}\)
B = \(\frac{2}{10.18}+\frac{2}{18.26}+\frac{2}{26.34}+...+\frac{2}{802.810}\)
B = \(\frac{1}{4}.\left(\frac{1}{10}-\frac{1}{18}+\frac{1}{18}-\frac{1}{26}+\frac{1}{26}-\frac{1}{34}+...+\frac{1}{802}-\frac{1}{810}\right)\)
B = \(\frac{1}{4}.\left(\frac{1}{10}-\frac{1}{810}\right)=\frac{1}{4}.\frac{8}{81}\)
B = \(\frac{2}{81}\)
4S = 4/(5x5) + 4/(9x9) + … + 1/(409x409)
Ta thấy:
4/(5x5) < 4/(3x7) = 1/3 – 1/7
4/(9x9) < 4/(7x11) = 1/7 – 1/11
…………
4/(409x409) < 4/(407x411) = 1/407 – 1/411
Mà :
4/(3x7) + 4/(7x11) + …. + 4/(407x411) = 1/3 – 1/411 = 136/411
4S < 136/411
S < 34/411 < 34/408 = 1/12
Hay S < 1/12
a) \(\dfrac{3}{8}+\dfrac{7}{12}+\dfrac{10}{16}+\dfrac{10}{24}\)
\(=\dfrac{3}{8}+\dfrac{7}{12}+\dfrac{5}{8}+\dfrac{5}{12}\)
\(=\left(\dfrac{3}{8}+\dfrac{5}{8}\right)+\left(\dfrac{7}{12}+\dfrac{5}{12}\right)\)
\(=1+1\)
\(=2\)
b) \(\dfrac{4}{6}+\dfrac{7}{13}+\dfrac{17}{9}+\dfrac{19}{13}+\dfrac{1}{9}+\dfrac{14}{6}\)
\(=\dfrac{2}{3}+\dfrac{7}{13}+\dfrac{17}{9}+\dfrac{19}{13}+\dfrac{1}{9}+\dfrac{7}{3}\)
\(=\left(\dfrac{2}{3}+\dfrac{7}{3}\right)+\left(\dfrac{7}{13}+\dfrac{19}{13}\right)+\left(\dfrac{17}{9}+\dfrac{1}{9}\right)\)
\(=3+2+2\)
\(=7\)
c) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(=1-\dfrac{1}{7}\)
\(=\dfrac{6}{7}\)
=1/1.3.5+1/3/5/7+1/5.7.9+......+1/17/19/21
=1/4.(5-1/1.3.5+7-3/3.5.7+.....+21-17/17/19/21
=1/4.(5/1.3.5-1/1.3.5+7/3.5.7-3/3.5.7+.....+21/17.19.21-17/17.19.21
=1/4.(1/1.3-1/3.5+1/3.5-1/5.7+.....+1/17.19-1/19.21)
=1/4.(1/3.1/21.17)
=1/4.3200/9603
= 800/9603
Chúc bạn học tốt^^
Đặt \(A=\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+...+\frac{1}{17.19.21}\)
\(\Rightarrow4A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{17.19.21}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{17.19}-\frac{1}{19.21}\)
\(=\frac{1}{1.3}-\frac{1}{19.21}=\frac{44}{133}\)
\(\Rightarrow A=\frac{44}{133}\div4=\frac{11}{133}\)
B=4*13/9*3-4/3*40/9
B=4/3*13/9-4/3*40/9
B=4/3*(13/9-40/9)
B=4/3*(-27)/9
B=4*(-3)/9
B=-4
A=6/7 + 1/7.(2/7+5/7)
A=6/7 + 1/7.7/7=6/7+1/7.1
A=6/7+1/7=7/7=1
a) Số số hạng của tổng là:
(407-1):2+1=204(số hạng )
Từ đó ,ta có:\(\Rightarrow\)S=1+3-5-7+9+11-...-405-407
\(\Rightarrow\)(1+3-5-5)+(9+11-13-15)+...+(401+403-405-407) \(\Rightarrow\)(-8)+(-8)+...+(-8) (51 số -8)
\(\Rightarrow\)-8.51=-408
a) Số số hạng của tổng là:
( 407 - 1 ) : 2 + 1 = 204 ( số hạng )
Từ đó ,ta có:\(⇒\)S = 1 + 3 - 5 - 7 + 9 + 11 - ... - 405 - 407
⇒( 1 + 3 - 5 - 5 ) + ( 9 + 11 - 13 - 15 ) + ... + ( 401 + 403 - 405 - 407 ) ⇒( - 8 ) + ( - 8 ) + ... + ( - 8 ) . ( 51 số - 8 )
⇒- 8 . 51 = - 408
Siu