Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+2+4+8+16+32+64+128+256+512+1024+2048
=1+(2+8)+(4+16)+(32+128)+(64+256)+(512+2048)+1024
=1+10+20+160+320+2560+1024
=4095
1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 + 2048 = 4095
k nha công chúa nụ cười =_= ^_^
#)Giải :
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{256}-\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{512}\)
\(=\frac{255}{512}\)
Lời giải
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{256}-\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{512}\)
\(=\frac{255}{512}\)
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}+\dfrac{1}{512}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}+\dfrac{1}{256}\)
\(\Rightarrow A=2A-A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}+\dfrac{1}{256}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{8}-...-\dfrac{1}{256}-\dfrac{1}{512}\)
\(\Rightarrow A=1-\dfrac{1}{512}=\dfrac{511}{512}\)
a) Đặt A=1/2 + 1/4 + 1/8 +...+ 1/256 + 1/512
\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^8}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(A=1-\frac{1}{2^9}\)
b)\(\frac{a}{b}+\frac{4}{6}+\frac{2}{10}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{b}+\frac{13}{15}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{b}=\frac{19}{30}\)
\(\frac{4}{5}:\frac{a}{b}-\frac{6}{5}=\frac{3}{10}\)
\(\Rightarrow\frac{4}{5}:\frac{a}{b}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{b}=\frac{8}{15}\)
\(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+....+\frac{1}{256}-\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{512}\)
\(=\frac{255}{512}\)
Vậy \(A=\frac{255}{512}\)
A=14 +18 +116 +132 +164 +1128 +1256 +1512
=12 −14 +14 −18 +....+1256 −1512
=12 −1512
=255512
Vậy A=255512
Phạm Long Khánh
\(D=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+..........+\dfrac{1}{256}+\dfrac{1}{512}\)
\(\Leftrightarrow2D=1+\dfrac{1}{2}+\dfrac{1}{4}+......+\dfrac{1}{256}\)
\(\Leftrightarrow2D-D=\left(1+\dfrac{1}{2}+.....+\dfrac{1}{256}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.....+\dfrac{1}{512}\right)\)
\(\Leftrightarrow D=1-\dfrac{1}{512}=\dfrac{511}{512}\)
\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{10}}=\frac{1023}{1024}\)
BẤM ĐÚNG NHÉ
Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
2A = 1/2 x 2 + 1/4 x 2 + 1/8 x 2 + 1/16 x 2 + 1/32 x 2 + 1/64 x 2 + 1/128 x 2 + 1/256 x 2 + 1/512 x 2
2A = 1 + 1/2 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
2A - A = ( 1 + 1/2 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 ) - ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 )
A = 1 - 1/512
A = 511/512
Ta đặt:
S=1+2+4+8+...+256+512
S=20+21+22+23+...+28+29
2S=(20+21+22+23+...+28+29).2
2S=20.2+21.2+22.2+23.2+...+28.2+29.2
2S=21+22+23+...+28+29+210
Do đó:
2S-S=(21+22+23+...+28+29+210)-(20+21+22+23+...+28+29)
=>S=210-20
S=1024-1=1023