Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính nhanh (2/3+3/4+5/6+...+99/100).(1/2+2/3+3/4+...+98/99)-(1/2+1/3+...+99/100).(2/3+2/4+...+98/99)
\(D=\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...\frac{1}{99.100}\)
\(D=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...\frac{1}{99}-\frac{1}{100}\)
\(D=\frac{1}{1}-\frac{1}{100}\)
\(D=\frac{99}{100}\)
Vậy tổng D bằng \(\frac{99}{100}\)
tổng quát: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
áp dụng ta có: \(D=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
Đặt A = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 99.100.(101 - 98)
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
=> 3A = 99.100.101
=> A = 99.100.101 : 3 = 333 300
Vậy 1.2 + 2.3 + 3.4 + ... + 99.100 = 333 300
P.S : Dấu "." là dấu "x"
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
M = \(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{99x100}\)
M = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
M = \(1-\dfrac{1}{100}\)
M = \(\dfrac{99}{100}\)