Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(\left(10^2+8^2+6^2+4^2+2^2\right)-\left(1^2+3^2+5^2+7^2+9^2\right)\)
\(=10^2+8^2+6^2+4^2+2^2-1^2-3^2-5^2-7^2-9^2\)
\(=10^2-9^2+8^2-7^2+6^2-5^2+4^2-3^2+2^2-1^2\)
\(=\left(10^2-9^2\right)+\left(8^2-7^2\right)+\left(6^2-5^2\right)+\left(4^2-3^2\right)+\left(2^2-1^2\right)\)
\(=\left(10-9\right)\left(10+9\right)+\left(8-7\right)\left(8+7\right)+\left(6-5\right)\left(6+5\right)+\left(4-3\right)\left(4+3\right)+\left(2-1\right)\left(2+1\right)\)
\(=\left(10+9\right)+\left(8+7\right)+\left(6+5\right)+\left(4+3\right)+\left(2+1\right)\)
\(=10+9+8+7+6+5+4+3+2+1\)
\(=55\)
Vậy ...
= \(10^2+8^2+6^2+4^2+2^2-9^2-7^2-5^2-3^2-1\)-1
=\(55\)
\(\left(10^2+8^2+6^2+4^2+2^2\right)-\left(9^2+7^2+5^2+3^2+1^2\right)\)
\(=10^2+8^2+6^2+4^2+2^2-9^2-7^2-5^2-3^2-1^2\)
\(=\left(10^2-9^2\right)+\left(8^2-7^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(10-9\right)\left(10+9\right)+\left(8-7\right)\left(8+7\right)+...+\left(2-1\right)\left(1+2\right)\)
\(=10+9+8+7+...+2+1\)
\(=\frac{\left(1+10\right)\cdot10}{2}\)
\(=55\)
(10^2+8^2+6^2+4^2+2^2)-(9^2+7^2+5^2+3^2+1^2)
=102+82+62+42+22-92-72-52-32-12
=(102-92)+(82-72)+(62-52)+(42-32)+(22-12)
=(10-9)(10+9)+(8-7)(8+7)+(6-5)(6+5)+(4-3)(4+3)+(2-1)(2+1)
=10+9+8+7+6+5+4+3+2+1
=55
\(\left(10^2+8^2+6^2+4^2+2^2\right)-\left(9^2+7^2+5^2+3^2+1^2\right)=220-165=55\)
Bài làm:
Ta có: \(\left(10^2+8^2+...+2^2+1^2\right)-\left(9^2+7^2+...+1^2\right)\)
\(=\left(10^2-9^2\right)+\left(8^2-7^2\right)+...+\left(2^2-1^2\right)+1\)
\(=\left(10-9\right)\left(10+9\right)+\left(8-7\right)\left(8+7\right)+...+\left(2-1\right)\left(2+1\right)+1\)
\(=19.1+15.1+...+3.1+1\)
\(=1+3+7+11+15+19\)
\(=56\)