Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng là: (625-1) : 4 +1= 157
A= (625+1). 157 :2 = 49141
\(T=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{576}\right).\left(1-\frac{1}{625}\right)\)
\(T=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{575}{576}.\frac{624}{625}\)
\(T=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{23.25}{24.24}.\frac{24.26}{25.25}\)
\(T=\frac{1.2.3...23.24}{2.3.4...24.25}.\frac{3.4.5...25.26}{2.3.4...24.25}\)
\(T=\frac{1}{25}.\frac{26}{2}=\frac{1}{25}.13=\frac{13}{25}\)
a) \(\dfrac{3}{8}+\dfrac{7}{12}+\dfrac{10}{16}+\dfrac{10}{24}\)
\(=\dfrac{3}{8}+\dfrac{7}{12}+\dfrac{5}{8}+\dfrac{5}{12}\)
\(=\left(\dfrac{3}{8}+\dfrac{5}{8}\right)+\left(\dfrac{7}{12}+\dfrac{5}{12}\right)\)
\(=1+1\)
\(=2\)
b) \(\dfrac{4}{6}+\dfrac{7}{13}+\dfrac{17}{9}+\dfrac{19}{13}+\dfrac{1}{9}+\dfrac{14}{6}\)
\(=\dfrac{2}{3}+\dfrac{7}{13}+\dfrac{17}{9}+\dfrac{19}{13}+\dfrac{1}{9}+\dfrac{7}{3}\)
\(=\left(\dfrac{2}{3}+\dfrac{7}{3}\right)+\left(\dfrac{7}{13}+\dfrac{19}{13}\right)+\left(\dfrac{17}{9}+\dfrac{1}{9}\right)\)
\(=3+2+2\)
\(=7\)
c) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(=1-\dfrac{1}{7}\)
\(=\dfrac{6}{7}\)
=(1-1/3)(1-1/4)(1-1/5)*...*(1-1/50)(1+1/3)(1+1/4)*...*(1+1/50)
=2/3*3/4*...*49/50*4/3*5/4*...*51/50
=2/50*51/3=17*1/25=17/25
\(\left(1-\dfrac{1}{9}\right)\cdot\left(1-\dfrac{1}{16}\right)\cdot\left(1-\dfrac{1}{25}\right)\cdot...\cdot\left(1-\dfrac{1}{2500}\right)\)
\(=\left(\dfrac{9}{9}-\dfrac{1}{9}\right)\cdot\left(\dfrac{16}{16}-\dfrac{1}{16}\right)\cdot...\cdot\left(\dfrac{2500}{2500}-\dfrac{1}{2500}\right)\)
\(=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)
\(=\dfrac{8\cdot15\cdot24\cdot...\cdot2499}{9\cdot16\cdot25\cdot...\cdot2500}\)
\(=\dfrac{\left(2\cdot4\right)\cdot\left(3\cdot5\right)\cdot\left(4\cdot6\right)\cdot....\cdot\left(49\cdot51\right)}{\left(3\cdot3\right)\cdot\left(4\cdot4\right)\cdot\left(5\cdot5\right)\cdot...\cdot\left(50\cdot50\right)}\)
\(=\dfrac{\left(2\cdot3\cdot4\cdot5\cdot...\cdot49\right)\left(4\cdot5\cdot6\cdot...\cdot51\right)}{\left(2\cdot3\cdot4\cdot...\cdot50\right)\left(2\cdot3\cdot4\cdot...\cdot50\right)}\)
\(=\dfrac{1\cdot51}{50\cdot2}\)
\(=\dfrac{51}{100}\)
ta có
A = \(1+\frac{1+2}{2}+\frac{1+2+3}{3}+\frac{1+2+3+4}{4}+......+\frac{1+2+3+\text{4 +....+16}}{16}\)
xét tổng S = 1+2+3+4+5+......+n = \(\frac{\left(n+1\right)n}{2}\) lấy \(\frac{S}{n}=\frac{\frac{\left(n+1\right)n}{2}}{n}=\frac{n+1}{2}\)
ta có
A=\(1+\frac{\frac{2\left(2+1\right)}{2}}{2}+\frac{\frac{3\left(3+1\right)}{2}}{3}+\frac{\frac{4\left(4+1\right)}{2}}{4}+\frac{\frac{5\left(5+1\right)}{2}}{5}+......+\frac{\frac{16\left(16+1\right)}{2}}{16}\)
A = \(1+\frac{1+2}{2}+\frac{1+3}{2}+\frac{1+4}{2}+\frac{1+5}{2}+......+\frac{1+16}{2}\)
A = \(1+\frac{1+2+1+3+1+\text{4+1+5+1+6+.....+1+16}}{2}\)
A = \(1+\frac{151}{2}\)
A = \(\frac{153}{2}\)
\(\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)......\left(1-\frac{1}{625}\right)\)
= \(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}......\frac{624}{625}\)
= \(\frac{1.3.2.4.3.5.....24.26}{2.2.3.3.4.4......25.25}\)
= \(\frac{\left(1.2.3....24\right)\left(3.4.5....26\right)}{\left(2.3.4....25\right)\left(2.3.4....25\right)}\)
= \(\frac{26}{25.2}\)
= \(\frac{13}{25}\)