
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Tham khảo:Câu hỏi của Hoang Phươngpsh - Toán lớp 5 - Học toán với OnlineMath
\(\frac{1}{1.2}\frac{1}{2.3}\frac{1}{3.4}...........\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)

\(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)\)
\(=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-99}{100}\)
\(=\frac{1}{-2}.\frac{-2}{3}.\frac{3}{-4}...\frac{-99}{100}=\frac{1}{100}\)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)......\left(\frac{1}{100}-1\right)\)
\(=\frac{-1}{2}\frac{-2}{3}\frac{-3}{4}......\frac{-99}{100}\)
\(=\frac{-1}{2}\frac{2}{-3}\frac{-3}{4}......\frac{99}{-100}\)
\(=\frac{-1}{-100}=\frac{1}{100}\)

( 101+100+.......+3+2+1 ) / ( 101-100+100_99+........+ 4 - 3 + 2 - 1 )
= [ ( 101+1 )+( 100+2 )+....+( 52+50 )+ 51 ] / [ ( 101-100 )+(100-99)+........+( 4 - 3 )+( 2 - 1 )
= 102+102+.........+102+51 / 1+1+..............+1+1
= { [ 51( cặp) * 102 ] +51 } / [ 51(cặp) * 1 ]
= 5252 + 51 / 51
= 5253 / 51
= 103

Tách 100 thành 100 số 1
Ta có: TS=\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=100-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
=\(0+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)=MS
=> Phân số trên=1

Ta có:
\(A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
=> \(3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
=> \(A+3A=1-\frac{1}{3^{100}}\)
=> \(4A=\frac{3^{100}-1}{3^{100}}\)
=> \(A=\frac{3^{100}-1}{4.3^{100}}\)

\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{100}\right)\)
\(=\left(\frac{2}{2}+\frac{1}{2}\right)\left(\frac{3}{3}+\frac{1}{3}\right)...\left(\frac{100}{100}+\frac{1}{100}\right)\)
\(=\frac{3}{2}.\frac{4}{3}...\frac{101}{100}\)
\(=\frac{3.4...101}{2.3...100}\)
\(=\frac{101}{2}\)
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{100}\right)\)
\(=\left(\frac{2}{2}+\frac{1}{2}\right)\left(\frac{3}{3}+\frac{1}{3}\right)...\left(\frac{100}{100}+\frac{1}{100}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot...\cdot\frac{101}{100}\)
\(=\frac{101}{2}\)