Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=6^2+6^4+6^6+...+6^{98}+6^{100}\)
=> \(6^2.S=6^4+6^6+6^8+...+6^{100}+6^{102}\)
=> \(6^2.S-S=35.S=6^{102}-6^2\)
=> \(S=\frac{6^{102}-6^2}{35}\)
s=6^+6^4+...+6^100
suy ra:6^2 s=6^2(6^2+6^4+...+6^100)
=6^4+6^6+...+6^102
6^2s-s=(6^4+6^6+...+6^102)-(6^2+6^4+...+6^100)
35s=6^102-6^2
suy ra:s=6^102-6^2/35
\(S=-6^0+6^1-6^2+6^3-...+6^{2017}\\ \Rightarrow6S=-6^1+6^2-6^3+6^4-...+6^{2018}\\ \Rightarrow6S+S=-6^1+6^2-6^3+6^4-...+6^{2018}-6^0+6^1-6^2+6^3-...+6^{2017}\\ \Rightarrow7S=6^{2018}-1\\ \Rightarrow S=\dfrac{6^{2018}-1}{7}\)
A = 6/3 . ( 1/15.18 + 1/18.21 + 1/21/24 + . . . + 1/87.90 )
A = 6/3 . ( 1/15 - 1/18 + 1/18 - 1/21 + 1/21 - 1/24 + . . . + 1/87 - 1/90 )
A = 2 . ( 1/15 - 1/90 )
A = 2. 5/90
A = 10/90 = 1/9
\(\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{84.87}+\frac{6}{87.90}\)
\(=\frac{6}{3}\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{84.87}+\frac{3}{87.90}\right)\)
\(=2\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{84}-\frac{1}{87}+\frac{1}{87}-\frac{1}{90}\right)\)
\(=2\left(\frac{1}{15}-\frac{1}{90}\right)=2\left(\frac{6-1}{90}\right)=2\times\frac{1}{18}=\frac{1}{9}\)
\(\dfrac{6}{5.7}+\dfrac{6}{7.9}+...+\dfrac{6}{59.61}\)
\(=3\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)
\(=3\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(=3\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)
\(=\dfrac{3.56}{305}\\ =\dfrac{168}{305}\)
Áp dụng quy tắc cộng hai số nguyên khác dấu.
a . ( − 10 ) + 6 = - 4 b . 6 + − 6 = 0 c . − 5 + 0 = - 5 d . − 6 + 7 = 1
ta có A=\(\dfrac{6}{8}\)+\(\dfrac{6}{56}\)+\(\dfrac{6}{140}\)+...+\(\dfrac{6}{1100}\)+\(\dfrac{6}{1400}\)
=\(\dfrac{3}{4}\)+\(\dfrac{3}{28}\)+\(\dfrac{3}{70}\)+...+\(\dfrac{3}{550}\)+\(\dfrac{3}{700}\)
=\(\dfrac{3}{1.4}\)+\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{22.25}\)+\(\dfrac{3}{25.28}\)
=1-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{10}\)+...+\(\dfrac{1}{22}\)-\(\dfrac{1}{25}\)+\(\dfrac{1}{25}\)-\(\dfrac{1}{28}\)
=1-\(\dfrac{1}{28}\)
=\(\dfrac{27}{28}\)
Vậy A=\(\dfrac{27}{28}\)
Ta có:
A =6/8+6/56+6/140+...+6/1100+6/1400
⇒A=3/4+3/28+3/70+...+3/550+3/700
⇒A=3/1.4+3/4.7+3/7.10+...+3/22.25+3/25.28
⇒A=1−1/4+1/4−1/7+1/7−1/10+...+1/22−1/25+1/25−1/28
⇒A=1−1/28
⇒A=1-1/38
600:25 = 24
72 : 6 = 12