K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

Ta có:

\(P=\int \frac{x^2-1}{x\sqrt{x^3+x}}dx=\int \frac{\frac{x^2-1}{x^2}}{\frac{\sqrt{x^3+x}}{x}}dx\)

\(=\int \frac{(1-\frac{1}{x^2})dx}{\frac{\sqrt{x^3+x}}{x}}=\int \frac{d\left(x+\frac{1}{x}\right)}{\frac{\sqrt{x^3+x}}{x}}\)

Đặt \(\frac{\sqrt{x^3+x}}{x}=t\Rightarrow t^2=\frac{x^3+x}{x^2}=x+\frac{1}{x}\)

Khi đó: \(P=\int \frac{d(t^2)}{t}=\int \frac{2tdt}{t}=\int 2dt=2t+c=\frac{2\sqrt{x^3+x}}{x}+c\)

26 tháng 1 2023

ko biết

 

NV
15 tháng 9 2021

\(\int\dfrac{1}{x^3+x^2-22x-40}dx=\int\dfrac{1}{\left(x-5\right)\left(x+2\right)\left(x+4\right)}dx\)

\(=\int\left(\dfrac{1}{63}.\dfrac{1}{x-5}-\dfrac{1}{14}.\dfrac{1}{x+2}+\dfrac{1}{18}.\dfrac{1}{x+4}\right)dx\)

\(=\dfrac{1}{63}ln\left|x-5\right|-\dfrac{1}{14}ln\left|x+2\right|+\dfrac{1}{18}ln\left|x+4\right|+C\)

12 tháng 1 2018

Đáp án C.

26 tháng 2 2018

Chọn A

Ta có 

10 tháng 10 2019

Đáp án C

2 tháng 3 2018

Chọn D

19 tháng 11 2018

Chọn C.

Đặt  u   =   G ( x ) d v   =   f ( x ) d x ⇒ d u   =   G ( x ) ' d x   =   g ( x )   d x v   =   ∫ f ( x ) d x   =   F ( x )

Suy ra: I =  G ( x ) F ( x ) 2 0   - ∫ 0 2 F ( x ) g ( x ) d x  

= G(2)F(2) – G(0)F(0) – 3 = 1 – 0 – 3 = -2.