\(4y^2=2+\sqrt{199-x^2-2x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2015

Ta biến đơi VT được: \(VT=2+\sqrt{200-\left(x^2+2x+1\right)}=2+\left(\sqrt{200-\left(x+1\right)^2}\right)\)

Để vế trái xác định thì \(\left(x+1\right)^2\le200\)    \(\left(1\right)\).

Mặt khác : \(VP\) chia hết 2 mà 2 chia hết cho 2 nên \(\left(\sqrt{200-\left(x+1\right)^2}\right)\) chia hết cho 2

  hay \(200-\left(x+1\right)^2\) chia hết cho 4. VÌ 200 chia hêt cho 4. Nên \(\left(x+1\right)^2\) chia hết cho 4   \(\left(2\right)\)

mà \(\left(x+1\right)^2\) là số chính phương  \(\left(3\right)\)   (x là số nguyên)  

Từ (1) ;(2) và (3) ta có: \(\left(x+1\right)^2\in\left(0;4\right)\Leftrightarrow\left(x+1\right)\in\left(0;2;-2\right)\)

Từ đó tính được y.

tick mình nha

25 tháng 9 2015

a, Ta có  \(199-x^2-2x=200-\left(x+1\right)^2\le200\to4y^2-2=\sqrt{199-x^2-2x}\le\sqrt{200}<15.\)  
Vì vậy \(4y^2<17\to4y^2\le16\to y^2\le4\to-2\le y\le2.\) (Do  \(x,y\) là số nguyên). 

Vậy có ba trường hợp:

  TH1. Nếu \(y=0\to0=2+\sqrt{199-x^2-2x}\)  (mâu thuẫn). 

  TH2. Nếu \(y=\pm1\to4=2+\sqrt{199-x^2-2x}\to4=200-\left(x+1\right)^2\to\left(x+1\right)^2=196\) 
\(\to x+1=\pm14\to x=13,-15.\)  
Vậy ta thu được 4 nghiệm là \(\left(13,\pm1\right),\left(-15,\pm1\right)\).

 TH2. Nếu \(y=\pm2\to16=2+\sqrt{199-x^2-2x}\to196=200-\left(x+1\right)^2\to\left(x+1\right)^2=4\) 
\(\to x+1=\pm2\to x=1,-3.\)

Vậy ta thu được 4 nghiệm là \(\left(1,\pm2\right),\left(-3,\pm2\right)\).

Tóm lại phương trình có 8 nghiệm nguyên là \(\left(13,\pm1\right),\left(-15,\pm1\right)\)\(,\left(1,\pm2\right),\left(-3,\pm2\right)\).

b.  Đầu tiên ta thấy nếu \(y<0\to3^y=\frac{1}{3^{-y}}\)  không phải là số nguyên. Vậy \(y\ge0.\)  Nếu \(y\ge2\to3^y\vdots9\to x^2-5x+7\vdots9\to4x^2-20x+28\vdots9\to\left(2x-5\right)^2+3\vdots9.\) Đặc biệt ta suy ra \(\left(2x-5\right)^2\vdots3\to2x-5\vdots3\to\left(2x-5\right)^2\vdots9.\)   Mà \(\left(2x-5\right)^2+3\vdots9\to3\vdots9,\)  vô lí.

Do vậy mà \(y<2\to y=0,1.\)

Với \(y=0\to x^2-5x+7=1\to x^2-5x+6=0\to x=2,3.\)

Với \(y=1\to x^2-5x+7=3\to x^2-5x+4=0\to x=1,4.\)

Tóm lại phương trình sẽ có 4 nghiệm nguyên là \(\left(x,y\right)=\left(2,0\right),\left(3,0\right),\left(1,1\right),\left(4,1\right).\)

 

30 tháng 11 2018

\(4y^2=2+\sqrt{199-x^2-2x}\)

Ta có \(4y^2\) là một số nguyên \(\Rightarrow2+\sqrt{199-x^2-2x}\) là số nguyên

\(\Rightarrow199-x^2-2x\) là số chính phương

Ta có \(199-x^2-2x\ge0\Leftrightarrow x^2+2x\le199\Leftrightarrow\left(x+1\right)^2\le200\Leftrightarrow\left(x+1\right)^2\in\left\{1;4;9;16;25;36;49;64;81;100;121;144;169;196\right\}\)

Ta có \(199-x^2-2x\) là số chính phương \(\Leftrightarrow200-\left(x+1\right)^2\) là số chính phương\(\Rightarrow\left(x+1\right)^2\in\left\{4;100;196\right\}\Leftrightarrow\left(x+1\right)\in\left\{\pm2;\pm10;\pm14\right\}\)\(\Leftrightarrow\)\(x\in\left\{1;-3;9;-11;13;-15\right\}\)

Nếu x=1 thì y=\(\pm2\)

Nếu x=-3 thì y=\(\pm2\)

Nếu x=9 thì y=\(\pm\sqrt{3}\)(loại)

Nếu x=-11 thì y=\(\pm\sqrt{3}\)(loại)

Nếu x=13 thì y=\(\pm1\)

Nếu x=-15 thì \(y=\pm1\)

Vậy (x;y)\(=\){(1;2);(1;-2);(-3;2);(-3;-2);(13;1);(13;-1);(-15;1);(-15;-1)}

30 tháng 11 2018

Ta có:

\(-x^2-2x-1=-\left(x+1\right)^2\le0\)

\(\Rightarrow\sqrt{199-x^2-2x}=\sqrt{200-\left(x+1\right)^2}\le\sqrt{200}=10\sqrt{2}\)

\(\Rightarrow2+\sqrt{199-x^2-2x}\le2+10\sqrt{2}\)

\(\Rightarrow4y^2\le2+10\sqrt{2}\)

\(\Rightarrow y^2\le\dfrac{2+10\sqrt{2}}{4}\)

Mà y2 là số chính phương và \(y\in Z\)

Nên \(y^2\in\left\{1;4\right\}\)

\(\Rightarrow y\in\left\{-1;1;2;-2\right\}\)

mình bấm máy cho nhanh nha

y -1 1 2 -2
x 13 13 1 1

AH
Akai Haruma
Giáo viên
24 tháng 8 2019

Bài 1:

a) ĐKXĐ: \(x\geq \frac{-3}{2}\)

PT \(\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\)

\(\Leftrightarrow x^2+2x+1+(2x+3)-2\sqrt{2x+3}+1=0\)

\(\Leftrightarrow (x+1)^2+(\sqrt{2x+3}-1)^2=0\)

Vì $(x+1)^2\geq 0; (\sqrt{2x+3}-1)^2\geq 0$ với mọi $x\geq \frac{-3}{2}$ nên để tổng của chúng bằng $0$ thì $(x+1)^2=(\sqrt{2x+3}-1)^2=0$

$\Leftrightarrow x=-1$

Vậy $x=-1$

b) ĐKXĐ: \(x^2-4x-8\geq 0\)

PT \(\Leftrightarrow 2(x^2-4x-8)-3\sqrt{x^2-4x-8}=2\)

Đặt \(\sqrt{x^2-4x-8}=a(a\geq 0)\) thì PT trở thành:

\(2a^2-3a=2\)

\(\Leftrightarrow 2a^2-3a-2=0\Leftrightarrow (a-2)(2a+1)=0\)

\(\Rightarrow a=2\) (do $a\geq 0$)

\(\Leftrightarrow x^2-4x-8=4\)

\(\Leftrightarrow x^2-4x-12=0\Leftrightarrow \left[\begin{matrix} x=6\\ x=-2\end{matrix}\right.\) (đều thỏa mãn)

AH
Akai Haruma
Giáo viên
24 tháng 8 2019

Bài 2:
\(199-2x-x^2=200-(x^2+2x+1)=200-(x+1)^2\leq 200, \forall x\in\mathbb{Z}\)

\(\Rightarrow 4y^2=2+\sqrt{199-2x-x^2}\leq 2+\sqrt{200}\)

\(\Leftrightarrow y^2\leq \frac{2+\sqrt{200}}{4}< 9\)

\(\Rightarrow -3< y< 3\). Mà $y$ nguyên nên $y\in\left\{-2;-1;0;1;2\right\}$

Thay từng giá trị của $y$ vào PT ban đầu ta tìm được các cặp $(x,y)$ sau:

$(x,y)=(1,\pm 2); (-3,\pm 2); (13,\pm 1); (-15,\pm 1)$

15 tháng 6 2017

\(\frac{11x}{5}-\sqrt{2x+1}=3y-\sqrt{4y-1}+2\)

\(\Leftrightarrow\sqrt{4y-1}-\sqrt{2x+1}=3y+2-\frac{11x}{5}\)

Vì 4y - 1 chia cho 4 có số dư là 2 nên \(\sqrt{4y-1}\)là số vô tỷ .

Ta có VP là số hữu tỉ. VT là số vô tỷ và \(\hept{\begin{cases}4y-1\\2x+1\end{cases}}\)là 2 số hữu tỷ nên.

\(\Rightarrow\sqrt{4y-1}-\sqrt{2x+1}=0\)

\(\Leftrightarrow x=2y-1\)

Thế lại phương trình ban đầu ta được.

\(\Rightarrow y=3\)

\(\Rightarrow x=5\)

Vậy nghiệm cần tìm là \(\hept{\begin{cases}x=5\\y=3\end{cases}}\) 

11x5 −√2x+1=3y−√4y−1+2

⇔√4y−1−√2x+1=3y+2−11x5 

Vì 4y - 1 chia cho 4 có số dư là 2 nên √4y−1là số vô tỷ .

Ta có VP là số hữu tỉ. VT là số vô tỷ và {

4y−1
2x+1

là 2 số hữu tỷ nên.

⇒√4y−1−√2x+1=0

⇔x=2y−1

Thế lại phương trình ban đầu ta được.

⇒y=3

⇒x=5

Vậy nghiệm cần tìm là {

x=5
y=3
4 tháng 7 2016

Bài 1: 

PT \(5x^2+10x+5+2y^2+4y+2=13\Leftrightarrow5\left(x+1\right)^2+2\left(y+1\right)^2=13.\)(1)

\(\Rightarrow5\left(x+1\right)^2=13-2\left(y+1\right)^2\le13\forall y\)

Do x nguyên nên (x+1)2 chỉ có thể bằng 0 hoặc 1.

  • Nếu (x+1)= 0 thì 2(y+1)2 = 13 => không có y nguyên
  • Nếu (x+1)= 1 => x = 0 hoặc -2; thì 2(y+1)2 = 8 => \(y+1=\orbr{\begin{cases}2\\-2\end{cases}\Rightarrow y=\orbr{\begin{cases}1\\-3\end{cases}}}\)

PT có 4 nghiệm nguyên là (x=0;y=1) ; (x=0;y=-3) ; (x=-2;y=1) ; (x=-2;y=-3) .

4 tháng 7 2016

Mình viết mấy lần đều bị treo màn hình khi nhập công thức chăc vì dài quá.

Mình hướng dẫn thôi. Bạn tự làm vậy.

1./ Viết: \(A=\sqrt{3}\sqrt{2-\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}.\)

2./ Bình phương A. Sau khi biến đổi được:

\(A^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}\sqrt{2-\sqrt{3}}\)

\(\Rightarrow A^2-8=-2\left(\sqrt{2+\sqrt{3}}+\sqrt{3}\sqrt{2-\sqrt{3}}\right).\)

3./ Bình phương lần nữa được:

\(\left(A^2-8\right)^2=32\)

Nên A là nghiệm của PT đã cho.

1 tháng 11 2020

Bài 1 :

a) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)

Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)

Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

1 tháng 11 2020

Bài 2: 

\(2x^2+y^2-2xy+2y-6x+5=0\)

\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)

Vì \(\left(x-y-1\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy \(x=2\)và \(y=1\)

13 tháng 11 2016

xy - 2x - 3y + 1 = 0

<=> x(y - 2) = 3y - 1

<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)

Để x nguyên thì (y - 2) phải là ước của 5 hay

(y - 2) = (1, 5, - 1, - 5)

Giải tiếp sẽ ra