Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có f(x) + g(x) = 4x - 1. Khi đó nghiệm của đa thức tổng là x = 1/4. Chọn C
Chọn C
Ta có f(x) + g(x) = (2x2 - 5x - 3) + (-2x2 - 2x + 1) = -7x - 2
Cho -7x - 2 = 0 ⇒ x = -2/7
\(a.\left(2x-3\right)+\left(x+9\right)=0\)
\(3x+6=0\Rightarrow x=-2\)
\(b.10x-2x^2=0\)
\(\Rightarrow10x=2x^2\Rightarrow x=5\)
\(c.2x^2-5x-7=0\)
\(2x^2+2x-7x-7=0\)
\(2x\left(x+1\right)-7\left(x+1\right)=0\)
\(\left(2x-7\right)\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}2x-7=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3,5\\x=-1\end{cases}}\)
a, Ta có : \(2x-3+x+9=0\Leftrightarrow3x+6=0\Leftrightarrow x=-2\)
b, \(-2x^2+10x=0\Leftrightarrow-2x\left(x-5\right)=0\Leftrightarrow x=0;x=5\)
c, \(2x^2-7x+2x-7=0\Leftrightarrow\left(x+1\right)\left(2x-7\right)=0\Leftrightarrow x=-1;x=\frac{7}{2}\)
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
a: \(A=-5x^3+9x^3-2x^2-2x^2+x-x+1\)
\(=4x^3-4x^2+1\)
\(B=-4x^3+2x^3-2x^2+2x^2+6x-9x-2\)
\(=-2x^3-3x-2\)
\(C=x^3-6x^2+2x-4\)
b: \(A\left(x\right)+B\left(x\right)-C\left(x\right)\)
\(=4x^3-4x^2+1-2x^3-3x-2+x^3-6x^2+2x-4\)
\(=3x^3-10x^2-x-4\)
casio fx 570 thì ấn mode => 5 => 3 sau điền hệ số a;b;c
casio fx 580 thì ấn mode => 9 => 2 => 2 => điền hệ số a;b;c
có cả cách này à =)))
menu setup -> 9 -> 2 - > 2 (pt cần phân tích) -> nhập hệ số của pt vào từng biến thích hợp -> ''=''
VD : \(A=x^2+4x-5\)có nghiệm \(x_1=1;x_2=-5\)
vậy đa thức cần phân tích là : \(\left(x-1\right)\left(x+5\right)=x^2+5x-x-5\)
Vậy \(A=x^2+4x-5=x^2+5x-x-5=\left(x-1\right)\left(x+5\right)\)
tương tự nhé
a)⇔A= x4+2x3-5x+9+2x4-2x3= 3x4-5x+9
⇔B= 2x2-6x+2-3x4-2x2+3x-4= -3x4-3x-2
b)A(x)+B(x)= 3x4-5x+9-3x4-3x-2= -8x+7
A(x)-B(x)= 3x4-5x+9+3x4+3x+2= 6x4-2x+1
c)C(x) có hệ số tự do bằng 0 nên có nghiệm bằng 0
d)A(x)+5x= 3x4+9. Tại x bất kì thì 3x4≥0 ⇔ 3x4+9 ≥ 9 ≥ 0
⇒ H(x) vô nghiệm