K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2019

Dãy số có qui luật bạn :D

26 tháng 1 2016

kohieeur gì sất

theo mình thì cậu nên hỏi cô giáo là tốt nhất

hoặc ghi bó tay vào đó

15 tháng 2 2016

nhìn là thấy hoa cà hoa cải trước mắt òi

@_@  *_*  #_#  ?_?

AH
Akai Haruma
Giáo viên
31 tháng 10

Lời giải:

Tại $x=2013$ thì $x-2013=0$,

$A=(x^{21}-2013x^{20})-(x^{20}-2013x^{19})+(x^{19}-2013x^{18})-...-(x^2-2013x)+x-1$

$=x^{20}(x-2013)-x^{19}(x-2013)+x^{18}(x-2013)-...-x(x-2013)+x-1$

$=x^{20}.0-x^{19}.0+x^{18}.0-....-x.0+x-1$

$=x-1=2013-1=2012$

20 tháng 12 2018

ez mà =))

\(A=\frac{1^{2014}+2^{2014}+3^{2014}+...+10^{2014}}{2^{2014}.\left(1^{2014}+2^{2014}+...+10^{2014}\right)}=\frac{1}{2^{2014}}\)

DD
27 tháng 5 2021

\(S=2014+\frac{2014}{1+2}+\frac{2014}{1+2+3}+...+\frac{2014}{1+2+3+...+10000}\)

\(S=\frac{2014}{\frac{1.2}{2}}+\frac{2014}{\frac{2.3}{2}}+\frac{2014}{\frac{3.4}{2}}+...+\frac{2014}{\frac{10000.10001}{2}}\)

\(S=\frac{4028}{1.2}+\frac{4028}{2.3}+\frac{4028}{3.4}+...+\frac{4028}{10000.10001}\)

\(S=4028\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10000.10001}\right)\)

\(S=4028\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10001-10000}{10000.10001}\right)\)

\(S=4028\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10000}-\frac{1}{10001}\right)\)

\(S=4028\left(1-\frac{1}{10001}\right)=\frac{40280000}{10001}\)