Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1+(-2)+3+(-4)+...+19+(-20)
=[1+(-2)]+[3+(-4)]+...+[19+(-20)]
=-1+(-1)+...+(-1) (cos10 số -1)
=-1.10=-10
M = 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ....+ ( 1 + 2 + 3 + ......+ 99 )
M gồm 99 tổng, số 1 có mặt ở 99 tổng, số 2 có mặt ở 98 tổng,......., số 98 có mặt ở 2 tổng, số 99 có mặt ở 1 tổng
Vậy:
M = 1.99 + 2.98 + ...... + 98.2 + 99.1 = N
Vậy M = N
Ta có:
M=1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ....+ ( 1 + 2 + 3 + ......+ 99 )
=1+1+2+1+2+3+...+1+2+3+...+99
=(1+1+...+1+1)+(2+2+2+...+2)+...+(98+98)+99
-----99 số 1--; --98 số 2--------;...
=1.99+2.98+...+98.2+99.1
Mà N = 1. 99 + 2 . 98 + 3 . 97 + ....... + 99 . 1
=>M=N
\(=\frac{99}{100}.\frac{99}{98}.\frac{98}{97}.\frac{97}{96}.....\frac{4}{3}.\frac{3}{2}.\frac{2}{1}\)
Ta loại các số giống nhau ở tử và mẫu thì được
\(\frac{99}{100}.\frac{99}{1}\)
\(=\frac{9801}{100}\)
= \(\frac{99}{100}.\frac{99}{98}.\frac{98}{97}.\frac{96}{97}...\frac{4}{3}.\frac{3}{2}.\frac{2}{1}\)
Ta loại các số giống nhau ở tử số và mẫu số thì đc :
\(\frac{99}{100}.\frac{99}{1}\)
= \(\frac{9801}{100}\)
Đặt A
=> 4 x A = 1 x 2x 3 x 4+2 .3 .4.4 + .........+ 97. 98 . 99 . 4 + 98 . 99 . 100
=> 4 x A = 1 . 2 .3 . (4 - 0) + 2 . 3 . 4 . (5 - 1) + ........+ 97 . 98 . 99 . (100 - 96 ) + 98 .99 .100 . (101 - 97 )
=> 4 x A = 1 . 2 .3 . 4 - 0. 1 .2 .3 + 2. 3. 4 .5 - 1.2 .3 .4 + ..........+ 97 . 98 . 99. 100 - 96 . 97 .98. 99 + 98 .99 . 100 .101 -97 .98 .99. 100
=> 4 x A = 98 . 99 .100 - 0. 1 .2 .3
=> A = \(\frac{98.99.100-6}{4}\)
=> A = 242548.5
Tick cho tớ nha
1) 1+(-2)+3+(-4)+...+19+(-20) Tổng trên có : (20-1):1+1=20 ( số hạng )
= [1+(-2)]+[3+(-4)]+...+[19+(-20)] Có 20:2=10 nhóm
= (-1)+(-1)+(-1)+...+(-1) Có 10 số (-1)
=(-1).10=-10
=1/100-(1/1x2+1/2x3+...+1/99x100)
=1/100-(1-1/2+1/2-1/3+...+1/99-1/100)
=1/100-(1-1/100)
=1/100-1+1/100
=2/100-1
=-49/50
\(M=\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)
cộng vào mỗi phân số trong 98 phân số sau,trừ phân số cuối đi 98 , ta được :
\(M=1+\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{2}{98}+1\right)+\left(\frac{1}{99}+1\right)\)
\(M=\frac{100}{100}+\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)
chuyển phân số \(\frac{100}{100}\)ra sau , ta được :
\(M=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}+\frac{100}{100}\)
\(M=100.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)\)
\(\Rightarrow\frac{M}{N}=\frac{100.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}=100\)
Thank bn na !!!