Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{0,75-0,6+\dfrac{3}{7}+\dfrac{3}{13}}{2,72-2,2+\dfrac{11}{7}+\dfrac{11}{13}}\)
= \(\dfrac{\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}}{\dfrac{11}{4}-\dfrac{11}{5}+\dfrac{11}{7}+\dfrac{11}{13}}\)
= \(\dfrac{3.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}\)
= \(\dfrac{3}{11}\)
b. \(\dfrac{0,357-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{0,625-0,5+\dfrac{5}{11}+\dfrac{5}{12}}\)
= \(\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{\dfrac{5}{8}-\dfrac{5}{10}+\dfrac{5}{11}+\dfrac{5}{12}}\)
= \(\dfrac{3.\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}{5.\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}\)
= \(\dfrac{3}{5}\)
c, \(-\left|-1,5\right|.\left(1\dfrac{1}{3}-2\right)-\left|-\dfrac{2}{3}\right|\)
= \(-1,5.\left(\dfrac{4}{3}-2\right)-\dfrac{2}{3}\)
= \(-1,5.\left(\dfrac{-2}{3}\right)-\dfrac{2}{3}\)
= \(1-\dfrac{2}{3}=\dfrac{1}{3}\)
\(\left[\left(\dfrac{2}{193}-\dfrac{3}{386}\right).\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}+\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left[\left(\dfrac{4}{386}-\dfrac{3}{386}\right).\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{14}{3862}+\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left[\dfrac{1}{386}.\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{25}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left[\dfrac{1}{34}+\dfrac{33}{34}\right]:\left[\dfrac{1}{2}+\dfrac{9}{2}\right]\)
\(=1:5\)
\(=\dfrac{1}{5}\)
\(=0,2\)
Theo đề ta có:
\(\left[\left(\dfrac{2}{193}-\dfrac{3}{389}\right).\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{7}{1931}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=> \(\left[\left(\dfrac{4}{368}-\dfrac{3}{368}\right).\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{7}{1931}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=> \(\left[\dfrac{1}{386}.\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{7}{1931}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=> \(\left[\dfrac{1}{2}.\dfrac{1}{17}+\dfrac{33}{34}\right]:\left[\dfrac{7}{1931}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=> \(\left[\dfrac{1}{34}+\dfrac{33}{34}\right]:\left[\dfrac{7}{1931}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=> \(\left[\dfrac{34}{34}\right]:\left[\dfrac{7}{1931}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=> \(1:\left[\dfrac{7}{1931}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=> \(1:\left[\dfrac{14}{3862}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=>\(1:\left[\dfrac{25}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=> \(1:\left[1+\dfrac{9}{2}\right]\)
=> \(1:\left[\dfrac{2}{2}+\dfrac{9}{2}\right]\)
=> \(1:\dfrac{11}{2}\)
=> \(1.\dfrac{2}{11}\)
=> \(\dfrac{2}{11}\)
Đây là tính hợp lí ... mà câu a là 27,5 chứ không phải 2,75...
\(A=\dfrac{7,5-0,6+\dfrac{3}{7}+\dfrac{3}{13}}{27,5-2,2+\dfrac{11}{7}+\dfrac{11}{3}}=\dfrac{\dfrac{15}{2}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}}{\dfrac{55}{2}-\dfrac{11}{5}+\dfrac{11}{7}+\dfrac{11}{3}}\\ =\dfrac{3\left(\dfrac{5}{2}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(\dfrac{5}{2}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)
b: \(=26:\left[\dfrac{3:0.1}{2.5\cdot2}+\dfrac{0.25\cdot4}{2}\right]+\dfrac{2}{3}\cdot\dfrac{21}{4}\)
\(=26:\left[\dfrac{30}{5}+1\right]+\dfrac{42}{12}\)
\(=\dfrac{26}{7}+\dfrac{42}{12}=\dfrac{101}{14}\)
c: \(=\left[\dfrac{4-3}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{25}{4002}\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(=\dfrac{\left(\dfrac{1}{34}+\dfrac{33}{34}\right)}{\dfrac{1}{2}+\dfrac{9}{2}}=1:5=\dfrac{1}{5}\)
a: \(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{16}\left(1+2+3+...+16\right)\)
\(=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{16}\cdot\dfrac{16\cdot17}{2}\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{17}{2}\)
\(=\dfrac{1}{2}\left(2+3+4+...+17\right)\)
\(=\dfrac{1}{2}\cdot152=76\)
b: Sửa đề: \(\left[\left(\dfrac{2}{193}-\dfrac{3}{386}\right)\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}+\dfrac{11}{3862}\right)\cdot\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left(\dfrac{2}{193}\cdot\dfrac{193}{17}-\dfrac{3}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right):\left[\dfrac{7}{1931}\cdot\dfrac{1931}{25}+\dfrac{11}{3862}\cdot\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left(\dfrac{2}{17}-\dfrac{3}{34}+\dfrac{33}{34}\right):\left(\dfrac{7}{25}+\dfrac{11}{50}+\dfrac{9}{2}\right)\)
\(=\left(\dfrac{2}{17}+\dfrac{30}{34}\right):\dfrac{14+11+225}{50}\)
\(=1\cdot\dfrac{50}{250}=1\cdot\dfrac{1}{5}=\dfrac{1}{5}\)
c: Sửa đề: \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{1\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{\dfrac{3}{4}\left(1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}\right)}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{1}{2}\cdot\dfrac{3}{4}+\dfrac{5}{8}=\dfrac{3}{8}+\dfrac{5}{8}=1\)
d: \(\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)
\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{8}-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{4}+\dfrac{3}{6}-\dfrac{3}{10}}\)
\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{3\left(\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}\right)}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{2}\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}\right)}\)
\(=\dfrac{1}{3}+1:\dfrac{3}{2}=1\)
\(M=\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{2001}+\frac{11}{4002}\right).\frac{2001}{25}+\frac{9}{2}\right] \)
\(=\left(\frac{2}{17}-\frac{3}{34}+\frac{33}{34}\right):\left(\frac{7}{25}+\frac{11}{50}+\frac{9}{2}\right)\)
\(=\frac{4-3+33}{34}:\frac{14+11+225}{50}=1:5=0.2\)
\(M=\left[\dfrac{4-3}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{14+11}{4002}-\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(=\left(\dfrac{1}{17}\cdot\dfrac{193}{386}+\dfrac{33}{34}\right):\left[\dfrac{25}{4002}-\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(=1:\dfrac{625-2001\cdot4002+9\cdot50525}{100050}\)
\(=-\dfrac{100050}{7552652}\)
a) \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}=\left(1\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+0,5=1+1+0,5=2,5\)b)
\(\dfrac{3}{7}.19\dfrac{1}{3}-\dfrac{7}{7}.33\dfrac{1}{3}=\dfrac{7}{3}\left(19\dfrac{1}{3}-33\dfrac{1}{3}\right)=\dfrac{7}{3}.\left(-14\right)=-\dfrac{1}{6}\)
c,
\(\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{5}{7}\right)-\left(25\dfrac{1}{4}+2016\right):\left(\dfrac{-5}{7}\right)=\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{7}{5}\right)-\left(25\dfrac{1}{4}+2016\right):\left(\dfrac{-7}{5}\right)\)
\(\left(-\dfrac{7}{5}\right)\left(15\dfrac{1}{4}+2010-25\dfrac{1}{4}-2016\right)=\left(-\dfrac{7}{5}\right)\left(-10-6\right)=22,4\)
d,
\(\left(2017-\dfrac{3}{7}+\dfrac{9}{11}\right)-\left(2016-\dfrac{3}{7}+\dfrac{8}{17}\right)-\left(2015+\dfrac{9}{11}-\dfrac{8}{17}\right)=2017-\dfrac{3}{7}+\dfrac{9}{11}-2016+\dfrac{3}{7}-\dfrac{8}{17}-2015-\dfrac{9}{11}+\dfrac{8}{17}\)\(\left(2017-2016-2015\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{9}{11}-\dfrac{9}{11}\right)+\left(-\dfrac{8}{17}+\dfrac{8}{17}\right)=-2014\)
Bạn ơi cho mình hỏi tại sao đề bài câu c là -5/7 mà bn lm -7/5
1: \(A=\dfrac{-25}{27}-\dfrac{31}{42}+\dfrac{7}{27}+\dfrac{3}{42}=\dfrac{-2}{3}-\dfrac{2}{3}=\dfrac{-4}{3}\)
2: \(B=\dfrac{10.3-\left(9.5-4.5\right)\cdot2}{1.2-1.5}=\dfrac{10.3-10}{-0.3}=-1\)
c: \(=\dfrac{3}{49}\left(\dfrac{19}{2}-\dfrac{5}{2}\right)-\left(\dfrac{1}{20}-\dfrac{5}{20}\right)^2\cdot\left(\dfrac{-7}{14}-\dfrac{193}{14}\right)\)
\(=\dfrac{3}{49}\cdot7-\dfrac{1}{25}\cdot\dfrac{-200}{14}\)
\(=\dfrac{3}{7}+\dfrac{8}{14}=1\)
ta có
\(M=[(\dfrac{2}{193}-\dfrac{3}{386}).\dfrac{193}{17}+\dfrac{33}{34}]:[(\dfrac{7}{2001}+\dfrac{11}{4002}).\dfrac{2001}{25}+\dfrac{9}{2}]\)
\(\Rightarrow\)\(M=[\dfrac{1}{386}.\dfrac{193}{17}+\dfrac{33}{34}]:[\dfrac{25}{4002}.\dfrac{2001}{25}+\dfrac{9}{2}]\)
\(\Rightarrow\)\(M=[\dfrac{1}{34}+\dfrac{33}{34}]:[\dfrac{1}{2}+\dfrac{9}{2}]\)
\(\Rightarrow\)\(M=1:5\)
\(\Rightarrow M=\dfrac{1}{5}\)