Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ch0 a>0 và n là 1 số tự nhiên
Chứng minh rằng an+1an−2⩾n2(a+1a−2)
Lời giải:
Bất đẳng thức tương đương với (an−1+an−2+...+a+1)≥n2an−1 (hiển nhiên theo AM-GM)
Cách khác:
Do tính đối xứng giữa a và 1a nên ta có thể giả sử a ≥ 1. đặt √a =x ≥ 1.bdt ⇔ x2n+1x2n−2≥n2(x2+1x2−2)⇔(xn−1xn)2≥n2(x−1x)2⇔x^{n}-\frac{1}{x^{n}}\geq n(x-\frac{1}{x})$①.
Với x=1 thì ① đúng
Với x>1 thì ① ⇔xn−1+xn−3...+1xn−3+1xn−1≥n (đúng vì theo bđt AM-GM).
Dấu bằng xảy ra khi x=1 ⇔a=1
bài này được liệt vào câu hỏi hay nhưng mk cũng chưa nghĩ ra
Áp dụng bất đẳng thức Côsy cho các cặp số không âm (a^2,1);(b^2,1),(c^2,1) ta có: a^2 +1 >= 2a ; b^2 + 1 >= 2b ; c^2 + 1 >= 2c
Do đó: \(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}=\frac{3}{2}\)
Đẳng thức xảy ra <=> a^2 = 1 ; b^2 = 1 ; c^2 = 1 <=> \(\hept{\begin{cases}a=\pm1\\b=\pm1\\c=\pm1\end{cases}}\)
Ta có : \(a^2+b^2+c^2\ge ab+ac+\)\(bc\)(1)
vì , ta có
(1) \(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\)\(\ge2\left(ab+ac+bc\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)\)\(+\left(a^2-2ac+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng) => bất đẳng thức
Ta có :
\(a^2+b^2+c^2-2abc\ge ab+bc+ac-2abc\)
<=>\(a^2+b^2+c^2+2abc-3abc\ge ab+bc+ac-2abc\)
<=> \(1-3abc\ge ab+bc+ac-2abc\)
=> MAX P=1 <=> \(\hept{\begin{cases}a=0\\b=c=1\end{cases}}\)hoặc \(\hept{\begin{cases}b=0\\a=c=1\end{cases}}\)
hoặc \(\hept{\begin{cases}c=0\\a=b=1\end{cases}}\)
Sai thì bảo mình nhé
xin lỗi Dòng thứ 8 và 9 phải là
\(a^2+b^2+c^2+2abc-4abc\ge ab+ac+bc-2abc\)
\(\Leftrightarrow1-4abc\ge ab+ac+bc-2abc\)
Dự đoán khi \(a=b=c=\frac{3}{2}\) ta tính được \(P=\sqrt{5}\)
Ta sẽ chứng minh nó là GTLN của \(P\)
Thật vậy, theo BĐT Cauchy-Schwarz ta có:
\(\sum\frac{\sqrt{a^2-1}}{a}=\sum\sqrt{1-\frac{1}{a^2}}\leq\sqrt{(1+1+1)\sum\left(1-\frac{1}{a^2}\right)}=\sqrt{3\sum\left(1-\frac{1}{a^2}\right)}\)
Vậy ta quay ra chứng minh \(3\sum(1-\frac{1}{a^2})\leq5 \)
Hay \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq\frac{4}{3}\). Đặt \(\left\{{}\begin{matrix}a+b+c=3u\\ab+ac+bc=3v^2\\abc=w^3\end{matrix}\right.\)
Vì vậy điều kiện không phụ thuộc vào \(v^2\) và ta cần chứng minh \(9v^4-6uw^3\geq \frac{4}{3}w^6\)
Nó đủ để nói lên BĐT kia cho một GTNN của \(v^2\)
Ta đã biết \(a,b,c\) là các nghiệm dương của phương trình
\((x-a)(x-b)(x-c)=0\)
\(\Leftrightarrow x^3-3ux^2+3v^2x-w^3=0\)
\(\Leftrightarrow 3v^2x=-x^3+3ux^2+w^3\)
Do vậy, trên đường \(y=3v^2x\) và đồ thị của \(y=-x^3+3ux^2+w^3\) có \(3\) điểm chung và \(v^2\) nhận được GTNN
Khi đường \(y=3v^2x\) là một đường tiếp tuyến với đồ thị \(y=-x^3+3ux^2+w^3\)
Nó xảy ra trường hợp cho hai biến số bằng nhau
Tức là, nó đủ để chứng minh BĐT cuối cho \(b=a\) và điều kiện cho \(c=\frac{27+36a}{32a^2-18}\)
Như vậy, ta cần chứng minh
\(a^4+2a^2\left(\frac{27+36a}{32a^2-18}\right)^2\geq\frac{4}{3}a^4\left(\frac{27+36a}{32a^2-18}\right)^2\)
Hay \(a^2(2a-3)^2(8a^2+12a+9)\geq0\). Đúng !
mấy bài BĐT của bn giúp mình luyện nhiều thứ quá: luyện tay, luyện gõ, luyện não,tính kiên trì....
Để giải bài toán này, ta sẽ bắt đầu bằng việc tìm giá trị của a + b + c và ab + bc + ca.
Theo đề bài, ta có: a.b.c = 1
Đặt S = a + b + c và P = ab + bc + ca. Ta có thể viết lại biểu thức ban đầu như sau: (a^2 + b^2 + c^2) - (1/a^2 + 1/b^2 + 1/c^2) = 8(a + b + c) - 8(ab + bc + ca) (a^2 + b^2 + c^2) - (1/a^2 + 1/b^2 + 1/c^2) = 8S - 8P
Để đơn giản hóa công thức, ta sẽ nhân cả hai vế của phương trình với a^2b^2c^2: (a^2b^2c^2)(a^2 + b^2 + c^2) - (a^2b^2c^2)(1/a^2 + 1/b^2 + 1/c^2) = 8(a^2b^2c^2)(S - P)
Sau khi nhân và rút gọn, ta được: (a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4) - (a^2b^2 + a^2c^2 + b^2c^2) = 8(a^2b^2c^2)(S - P)
Do a.b.c = 1, ta có: a^2b^2c^2 = 1
Thay lại vào phương trình trên, ta có: (a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4) - (a^2b^2 + a^2c^2 + b^2c^2) = 8(S - P)
Rút gọn các thành phần, ta được: a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2 = 8(S - P)
Ta có thể viết lại đẹp hơn bằng cách nhân 2 vào cả hai vế: 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2) = 16(S - P)
Rút gọn, ta được: 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2) = 16S - 16P
Từ đó, ta có: 16P - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)
Chú ý rằng: P = ab + bc + ca S = a + b + c
Tiếp theo, ta sẽ xem xét biểu thức P = 1/a-1 + 1/b-1 + 1/c-1. Ta có thể viết lại biểu thức này như sau: P = (1/a + 1/b + 1/c) - 3
Ta biết rằng abc = 1, do đó: 1/a + 1/b + 1/c = ab + bc + ca
Thay vào biểu thức P, ta có: P = (ab + bc + ca) - 3
Như vậy, biểu thức P có thể được thay bằng biểu thức P = P - 3.
Tiếp theo, ta sẽ sử dụng kết quả từ phương trình trên để tính giá trị của P.
16P - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)
Thay P = P - 3 vào phương trình trên, ta có: 16(P - 3) - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)
Rút gọn và chuyển thành phương trình bậc hai: 16P - 48 - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)
8P - 24 - 8S = a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2
8P - 8S = a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2 + 24
8(P - S) = (a^2b^2 + a^2c^2 + b^2c^2)^2 - (a^2b^2 + a^2c^2 + b^2c^2) - a^2b^2 - a^2c^2 - b^2c^2 + 24
Đặt Q = a^2b^2 + a^2c^2 + b^2c^2, ta có: 8(P - S) = Q^2 - Q - Q + 24
8(P - S) = Q^2 - 2Q + 24
8(P - S) = (Q - 4)^2
Ta có thể viết lại thành phương trình: (P - S) = (Q - 4)^2 / 8
Do đó, giá trị của P - S là bình phương của một số chia cho 8.
Tuy nhiên, chúng ta không có thông tin cụ thể về giá trị của Q, vì vậy không thể tìm ra giá trị chính xác của P - S.
Vì vậy, không thể tính giá trị của biểu thức P = 1/a-1 + 1/b-1 + 1/c-1 chỉ dựa trên thông tin đã cho trong bài toán.
từ giả thiết ta có
a+b+c=0
<=> a=-(b+c0
a2=b2 +c2 +2bc
tương tự b2=a2+c2+2ac
c2=a2+b2+2ab
thay vào Q ta đc
\(Q=\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}\)
\(Q=\frac{1}{a^2+b^2-a^2-b^2-2ab}+\frac{1}{b^2+c^2-b^2-c^2-2bc}+\frac{1}{a^2+c^2-a^2-c^2-2ac}\)
\(Q=\frac{-1}{2ab}-\frac{1}{2bc}-\frac{1}{2ac}\)
\(Q=\frac{-b-a-c}{2abc}\)
\(Q=\frac{-\left(a+b+c\right)}{2abc}\)
\(Q=0\)
Vậy với a,b,c khác 0, a+b+c=0 thì Q=0
a) Có:
\(a+b+c=0\\\Leftrightarrow\left(a+b+c\right)^2=0\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\\ \Leftrightarrow2ab+2bc+2ca=-1\\ \Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\\ \Leftrightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}-0=\dfrac{1}{4} \)