Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
quy đồng lên ta đc \(\dfrac{2^2-1}{2^2}......\dfrac{2017^2-1}{2017^2}\)
khai triển hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)ta đc\(\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.....\dfrac{2016.2018}{2017}\)
=\(\dfrac{1.2.3^2.4^2.....2016^2.2017.2018}{2^2.......2017^2}=\dfrac{1.2018}{2.2017}=\dfrac{1009}{2017}\)
\(A=4.\dfrac{25}{16}+25.\left[\dfrac{9}{16}:\dfrac{125}{64}\right]:\dfrac{-27}{8}\)
\(=\dfrac{25}{16}+25.\dfrac{36}{125}:\dfrac{-27}{8}=-\dfrac{137}{240}\left(1\right)\)
\(B=125.\left[\dfrac{1}{25}+\dfrac{1}{64}:8\right]-64.\dfrac{1}{64}\)
\(=125.\dfrac{89}{1600}:8-64.\dfrac{1}{64}=\dfrac{-67}{512}\left(2\right)\)
Vì (2) > (1) => B > A
\(A=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2017}-\dfrac{1}{x+2018}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+2018}=\dfrac{2018}{x\left(x+2018\right)}\)
\(B=\dfrac{1}{4}\left(\dfrac{1}{x\left(x+2\right)}-\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}-\dfrac{1}{\left(x+4\right)\left(x+6\right)}+...+\dfrac{1}{\left(x+96\right)\left(x+98\right)}-\dfrac{1}{\left(x+98\right)\left(x+100\right)}\right)\)
\(B=\dfrac{1}{4}\left(\dfrac{1}{x\left(x+2\right)}-\dfrac{1}{\left(x+98\right)\left(x+100\right)}\right)=\dfrac{1}{4}\left(\dfrac{x^2+198x+9800-x^2-2x}{x\left(x+2\right)\left(x+98\right)\left(x+100\right)}\right)\)
\(B=\dfrac{196x+9800}{4x\left(x+2\right)\left(x+98\right)\left(x+100\right)}\)
a) 1/x(x + 1) + 1/(x + 1)(x + 2) + 1/(x + 2)(x + 3) + 1/(x + 3)(x + 4)
( 1/x - 1/x+1) + (1/x+1 - 1/x+2) + (1/x+2 - 1/ x+3) + 1/(x+3 - 1/x+4)
(1/x +1/x+4) - ( 1/x+2 - 1/x+2) - ( 1/x+3 - 1/x+3)
1/x +1/x+4
2x+4/x(x+4)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+....+\dfrac{1}{\left(x+2017\right)\left(x+2018\right)}\\ =\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2017}-\dfrac{1}{x+2018}\\ =\dfrac{1}{x}-\dfrac{1}{x+2018}\\ =\dfrac{2018}{x\left(x+2018\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2016}-\dfrac{1}{x+2017}+\dfrac{1}{x+2017}-\dfrac{1}{x+2018}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+2018}\)
\(=\dfrac{2018}{x\left(x+2018\right)}\)
A = \(\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(23^4+4\right)}\)
Xét: n4 + 4 = (n2+2)2 - 4n2 = (n2-2n+2)(n2+2n+2) = [(n-1)2+1][(x+1)2+1] nên: A = \(\dfrac{\left(0^2+1\right)\left(2^2+1\right)}{\left(2^2+1\right)\left(4^2+1\right)}.\dfrac{\left(4^2+1\right)\left(6^2+1\right)}{\left(6^2+1\right)\left(8^2+1\right)}.....\dfrac{\left(20^2+1\right)\left(22^2+1\right)}{\left(22^2+1\right)\left(24^2+1\right)}=\dfrac{1}{24^2+1}=\dfrac{1}{577}\)
B = \(\left(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{2}{n-2}+\dfrac{1}{n-1}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}\right)\)
Đặt C = \(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{n-\left(n-2\right)}{n-2}+\dfrac{n-\left(n-1\right)}{n-1}\)
= \(\dfrac{n}{1}+\dfrac{n}{2}+...+\dfrac{n}{n-2}+\dfrac{n}{n-1}-1-1-...-1\)
= \(n+\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}-\left(n-1\right)\)
= \(\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}+\dfrac{n}{n}\)
= \(n\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}\right)\)
Vậy ...