K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2021

\(A=2.\left|\left(-3\right)\right|^3+2.\left(-2\right)^2-4\left|\left(-2\right)^3\right|\)

\(=54+8-32=30\)

\(B=\left|\sqrt{2}-2\right|+\left|\sqrt{2}-3\right|=2-\sqrt{2}+3-\sqrt{2}\)

\(=5-2\sqrt{2}\)

\(C=\left|3-\sqrt{3}\right|-\left|1+\sqrt{3}\right|=3-\sqrt{3}-1-\sqrt{3}\)

\(=2-2\sqrt{3}\)

\(D=\left|5+\sqrt{6}\right|-\left|\sqrt{6}-5\right|=5+\sqrt{6}-5+\sqrt{6}\)

\(=2\sqrt{6}\)

\(E=\sqrt{15^2}-\sqrt{5^2}=15-5=10\)

26 tháng 6 2021

`A=2sqrt{(-3)^6}+2sqrt{(-2)^4}-4sqrt{(-2)^6}=2|(-3)^3|+2|(-2)^2|-4|(-2)^3|=54+8-32=30` $\\$ `B=sqrt{(sqrt2-2)^2}+sqrt{(sqrt2-3)^2}=2-sqrt2+3-sqrt2=5-2sqrt2` $\\$ `C=sqrt{(3-sqrt3)^2}-sqrt{(1+sqrt3)^2}=3-sqrt3-sqrt3-1=2-2sqrt3` $\\$ `D=sqrt{(5+sqrt6)^2}-sqrt{(sqrt6-sqrt5)^2}=5+sqrt6-5+sqrt6=2sqrt6` $\\$ `E=sqrt{17^2-8^2}-sqrt{3^2+4^2}=sqrt{289-64}-sqrt{9+16}=sqrt(225)-sqrt{25}=15-5=10`

Ta có: \(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)

\(=\left(\sqrt{6}+\sqrt{2}+\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)

\(=\left(7+2\sqrt{6}+3\sqrt{3}+4\sqrt{2}\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)

\(=10\)

4 tháng 9 2023

\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\\ =\left|2-\sqrt{5}\right|+\left|2\sqrt{2}-\sqrt{5}\right|\\ =\sqrt{5}-2+2\sqrt{2}-\sqrt{5}\\ =-2+\sqrt{2}\)

\(\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)}\\ =\left|\sqrt{7}-2\sqrt{2}\right|+\left|3-2\sqrt{2}\right|\\ =2\sqrt{2}-\sqrt{7}+3-2\sqrt{2}\\ =3-\sqrt{7}\)

\(\sqrt{\left(x-3\right)^2}\\ =\left|x-3\right|\\ =x-3\left(vì.x>3\right)\)

\(\sqrt{\left(1-x\right)^2}\\ =\left|1-x\right|\\ =x-1\left(vì.x>1\right)\)

\(\sqrt{9a^4}=\sqrt{\left(3a^2\right)^2}\\ =\left|3a^2\right|\\ =3a^2\)

\(\sqrt{100a^2}\\ =\sqrt{\left(10a\right)^2}\\ =\left|10a\right|\\ =-10a\left(vì.a< 0\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 9 2023

Lời giải:

a. $=|2-\sqrt{5}|+|2\sqrt{2}-\sqrt{5}|$

$=(\sqrt{5}-2)+(2\sqrt{2}-\sqrt{5})=-2+2\sqrt{2}$
b. $=|\sqrt{7}-2\sqrt{2}|+|3-2\sqrt{2}|=2\sqrt{2}-\sqrt{7}+(3-2\sqrt{2})$

$=3-\sqrt{7}$

c.

$=|x-3|=x-3$
d.

$=|1-x|=x-1$

$=\sqrt{(3a^2)^2}=|3a^2|=3a^2$
e.

$=\sqrt{(10a)^2}=|10a|=-10a$

 

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok

e) Ta có: \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

\(=\sqrt{2}+1-\sqrt{2}+1\)

=2

a: \(=\left(\sqrt{6}+\sqrt{2}+\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)

\(=\left(6+\sqrt{6}+\sqrt{2}+2\sqrt{3}+3\sqrt{2}+\sqrt{3}+\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)

\(=\left(7+2\sqrt{6}+3\sqrt{3}+4\sqrt{2}\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)

\(=35-14\sqrt{2}-7\sqrt{3}+10\sqrt{6}-8\sqrt{3}-6\sqrt{2}+\left(3\sqrt{3}+4\sqrt{2}\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)

\(=35-20\sqrt{2}-15\sqrt{3}+10\sqrt{6}+15\sqrt{3}-10\sqrt{6}+20\sqrt{2}-22\)

\(=13\)

b: \(=\left(\sqrt{15}-1-\sqrt{3}+\sqrt{5}\right)\left(\sqrt{15}-1\right)\left(7-2\sqrt{3}+\sqrt{5}\right)\)

\(=\left[16-2\sqrt{15}-3\sqrt{5}+\sqrt{3}+5\sqrt{3}-\sqrt{5}\right]\left(7-2\sqrt{3}+\sqrt{5}\right)\)

\(=\left(16-2\sqrt{15}-4\sqrt{5}+6\sqrt{3}\right)\left(7-2\sqrt{3}+\sqrt{5}\right)\)

=56

7 tháng 7 2021

\(3\sqrt{9a^6}-6a^3=3\left|3a^3\right|-6a^3\)

Xét \(a\ge0\Rightarrow\) biểu thức \(=9a^3-6a^3=3a^3\)

Xét \(a< 0\Rightarrow\) biểu thức \(=-9a^3-6a^3=-15a^3\)

\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(1-3x\right)^2}=\left|x-1\right|+\left|1-3x\right|\)

\(=1-x+3x-1\left(\dfrac{1}{3}< x\le1\right)=2x\)

\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{2-\sqrt{3}}.\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\)

\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{2}.\sqrt{3+\sqrt{5}}\)

\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{6+2\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\left(\sqrt{5}+1\right)^2\left(\sqrt{5}-1\right)^2=4^2=16\)

\(\sqrt{23-8\sqrt{7}}+\sqrt{8-2\sqrt{7}}=\sqrt{\left(2\sqrt{7}-4\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(=2\sqrt{7}-4+\sqrt{7}-1=3\sqrt{7}-5\)

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)

\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)

\(=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)

\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}=\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|\)

Xét \(x\ge8\Rightarrow\sqrt{x-4}\ge2\Rightarrow\)biểu thức \(=\sqrt{x-4}+2+\sqrt{x-4}-2\)

\(=2\sqrt{x-4}\)

Xét \(x< 8\Rightarrow\sqrt{x-4}< 2\Rightarrow\) biểu thức \(=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)