K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 9 2018

Lời giải:

a)

\(\frac{\frac{2}{3}-\frac{2}{5}+\frac{2}{7}-\frac{2}{9}+\frac{2}{11}}{\frac{8}{3}-\frac{8}{5}+\frac{8}{7}-\frac{8}{9}+\frac{8}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)}{8\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)}\) \(=\frac{2}{8}=\frac{1}{4}\)

b)

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{50}-1\right)\left(\frac{1}{51}-1\right)\)

\(=\frac{1-2}{2}.\frac{1-3}{3}.\frac{1-4}{4}....\frac{1-50}{50}.\frac{1-51}{2}=\frac{(-1)(-2)(-3)...(-49)(-50)}{2.3.4....50.51}\)

\(=\frac{(-1)^{50}.1.2.3....49.50}{2.3.4...50.51}=\frac{1}{51}\)

tính a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\) b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\) c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\) d)...
Đọc tiếp

tính

a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\)

b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\)

c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)

d) \(\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{3}\)

e) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2\div2\)

f) \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

g) \(\dfrac{1}{-\left(2017\right)\left(-2015\right)}+\dfrac{1}{\left(-2015\right)\left(-2013\right)}+...+\dfrac{1}{\left(-3\right)\cdot\left(-1\right)}\)

h) \(\left(1-\dfrac{1}{1\cdot2}\right)+\left(1-\dfrac{1}{2\cdot3}+...+\left(1-\dfrac{1}{2017\cdot2018}\right)\right)\)

3
7 tháng 10 2017

c)

Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)

\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)

7 tháng 10 2017

d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)

\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)

\(=3-1+\dfrac{1}{4}:2\)

\(=3-1+\dfrac{1}{8}\)

\(=\dfrac{17}{8}\)

                      ( chỉ cần ghi đáp án thoi )câu 1 : \(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)....\left(1-\dfrac{1}{21}\right)\)câu 2 : \(B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{100}\right)\)câu 3 : tìm a để \(\dfrac{a}{18}\), lớn hơn \(\dfrac{-5}{6}\)và nhỏ hơn \(\dfrac{-1}{2}\)câu 4...
Đọc tiếp

                      ( chỉ cần ghi đáp án thoi )

câu 1 : \(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)....\left(1-\dfrac{1}{21}\right)\)

câu 2 : \(B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{100}\right)\)

câu 3 : tìm a để \(\dfrac{a}{18}\), lớn hơn \(\dfrac{-5}{6}\)và nhỏ hơn \(\dfrac{-1}{2}\)

câu 4 : \(D=\left(\dfrac{1}{7}\right)^0+\left(\dfrac{1}{7}\right)^1+\left(\dfrac{1}{7}\right)^2+....+\left(\dfrac{1}{7}\right)^{2017}\)

câu 5 : \(E=-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+\dfrac{1}{3^4}-.....+\dfrac{1}{3^{50}}-\dfrac{1}{3^{51}}\)

câu 6 : \(F=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\)

câu 7 : rút gọn\(\dfrac{3}{5}+\dfrac{3}{5^4}+\dfrac{3}{5^7}+...+\dfrac{3}{5^{100}}=?\)

câu 8 : tính \(2^2+2^2+2^3+2^4+2^5+....+2^{49}+2^{50}\)

câu 9  : cho A = 1 + 3 +\(3^2+3^3+3^4+...+3^{100}\) khi đó stn 2.A+1=\(3^n\)

 

 

2
27 tháng 9 2021

\(1,A=\dfrac{1}{21}\\ 2,B=\dfrac{101}{200}\\ 3,a\in\left\{-14;-13;-12;-11;-10\right\}\\ 4,D=\dfrac{48}{7}\\ 5,E=-\dfrac{1}{3}\\ 6,F=2-\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

Câu 8:

Ta có: \(A=2+2^2+2^3+2^4+...+2^{50}\)

\(\Leftrightarrow2\cdot A=2^2+2^3+...+2^{51}\)

\(\Leftrightarrow A=2^{51}-2\)

23 tháng 9 2021

\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{19}\right)\left(1-\dfrac{1}{20}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{18}{19}.\dfrac{19}{20}=\dfrac{1}{20}>\dfrac{1}{21}\)

12 tháng 9 2021

\(a,=\dfrac{13}{50}\cdot\dfrac{50}{13}\cdot\left(-\dfrac{31}{2}\right)\cdot\dfrac{169}{2}=-\dfrac{5239}{2}\\ b,=\dfrac{-\dfrac{49}{100}\cdot\left(-125\right)}{-\dfrac{343}{27}\cdot\dfrac{81}{16}\cdot\left(-1\right)}=\dfrac{\dfrac{245}{4}}{\dfrac{1029}{16}}=\dfrac{245}{4}\cdot\dfrac{16}{1029}=\dfrac{20}{21}\)

12 tháng 9 2021

a) \(\dfrac{13}{50}.\left(-15.5\right):\dfrac{13}{50}.84\dfrac{1}{2}=\dfrac{13}{50}.-75:\dfrac{13}{50}.\dfrac{169}{2}=-\dfrac{75.169}{2}=-\dfrac{12675}{2}\)

b) \(\dfrac{\left(-0,7\right)^2.\left(-5\right)^3}{\left(-2\dfrac{1}{3}\right)^3.\left(1\dfrac{1}{2}\right)^4.\left(-1\right)^5}=\dfrac{0,49.\left(-125\right)}{-\dfrac{343}{27}.\dfrac{81}{16}.\left(-1\right)}=-\dfrac{\dfrac{245}{4}}{\dfrac{1029}{16}}=\dfrac{20}{21}\)

24 tháng 12 2022

\(\left(\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}\right)-\left(\dfrac{79}{67}-\dfrac{28}{41}\right)\)
\(=\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}-\dfrac{79}{67}+\dfrac{28}{41}\)
\(=\dfrac{1}{3}+\left(\dfrac{12}{67}-\dfrac{79}{67}\right)+\left(\dfrac{13}{41}+\dfrac{28}{41}\right)\)
\(=\dfrac{1}{3}+\left(-1\right)+1=\dfrac{1}{3}+0=\dfrac{1}{3}\)
\(\left(\dfrac{15}{4}-5x\right).\left(9x^2-4\right)=0\)
\(\left[{}\begin{matrix}\dfrac{15}{4}-5x=0\\9x^2-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}5x=\dfrac{15}{4}\\9x^2=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{2}{3}\end{matrix}\right.\)