K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mọi người giải giúp mk với ạ Câu 313. Giá trị đúng của lim Vn(n+1-In-1) là: A.-1. B. 0. D. +o. C. 1. Câu 314. Cho dãy số (un) với un = (n-1), 2n +2 . Chọn kết quả đúng của limu, là: %3D n' +n? -1 A. -00. B. 0. D. +oo, C. 1. 5" -1 Câu 315. lim- bằng : 3" +1 A. +oo. D. -co. B. 1. C. 0. 10 Câu 316. lim bằng : Vn* +n? +1 C. 0. D. -00. A. +oo. B. 10. Câu 317. lim200 - 3n +2n² bằng : C too. D. -0. B. 1. A. 0. Tìm két quả đúng của limu, . Câu 318. Cho...
Đọc tiếp

Mọi người giải giúp mk với ạ

Câu 313. Giá trị đúng của lim Vn(n+1-In-1) là: A.-1. B. 0. D. +o. C. 1.

Câu 314. Cho dãy số (un) với un = (n-1), 2n +2 . Chọn kết quả đúng của limu, là: %3D n' +n? -1 A. -00. B. 0. D. +oo, C. 1. 5" -1

Câu 315. lim- bằng : 3" +1 A. +oo. D. -co. B. 1. C. 0. 10

Câu 316. lim bằng : Vn* +n? +1 C. 0. D. -00. A. +oo. B. 10.

Câu 317. lim200 - 3n +2n² bằng : C too. D. -0. B. 1. A. 0. Tìm két quả đúng của limu, .

Câu 318. Cho dãy số có giới hạn (un) xác định bởi : -,n 21 2-u C. -1. D. B. 1. A. 0. 1 1 1 [2

Câu 319. Tìm giá trị đúng của S = 2| 1+-+ 2 48 2" C. 2 2. D. B. 2. A. 2 +1. 4" +2"+1 bằng :

Câu 320. Lim4 3" + 4"+2 1 B. D. +oo. A. 0. In+1-4

Câu 321. Tính giới hạn: lim Vn+1+n C.-1. D. B.O. A. 1. +(2n +1)- * 3n +4 1+3+5+...+ 3n 14,

Câu 322. Tính giới hạn: lim C. 2 3 B. D. 1. A. 0. 1 nlat1) +......+

Câu 323. Tính giới hạn: lim n(n+1) 1.2 2.3 3 C. 21 D. Không có giới hạn. B. 1. A. 0.

0
NV
27 tháng 7 2020

Bạn làm đúng nhưng ko hiểu đề và đáp án thôi

Đề hỏi "nghiệm nguyên dương nhỏ nhất"

\(\left[{}\begin{matrix}x=\frac{3\pi}{4}+k2\pi\\x=\frac{7\pi}{4}+k2\pi\end{matrix}\right.\) nên \(x=\frac{3\pi}{4}\) (ứng với \(k=0\))

\(\frac{3\pi}{4}\in\left[\frac{3\pi}{4};\pi\right]\) nên đáp án D đúng

18 tháng 3 2022

D. a=0

18 tháng 3 2022

lim\(\dfrac{an^3+n^2+1}{n^2+n}\)

\(lim\dfrac{an+1+\dfrac{1}{n^2}}{1+\dfrac{1}{n}}=an+1=1\)

\(\Rightarrow a=0\)

20 tháng 12 2019

B

NV
1 tháng 4 2020

a/ Đề không rõ ràng bạn

Từ câu b trở đi, dễ dàng nhận ra tất cả các hàm số đều liên tục trên R

b/ Xét \(f\left(x\right)=x^3+3x^2-1\)

Ta có: \(f\left(-3\right)=-1\) ; \(f\left(-2\right)=3\)

\(\Rightarrow f\left(-3\right).f\left(-2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-3;-2\right)\)

\(f\left(0\right)=-1\Rightarrow f\left(-2\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-2;0\right)\)

\(f\left(1\right)=3\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(0;1\right)\)

\(\Rightarrow f\left(x\right)\) luôn có 3 nghiệm phân biệt

NV
1 tháng 4 2020

c/\(f\left(x\right)=m\left(x-1\right)^3\left(m^2-4\right)+x^4-3\)

\(f\left(-2\right)=13\) ; \(f\left(1\right)=-2\)

\(\Rightarrow f\left(-2\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-2;1\right)\)

\(f\left(2\right)=13\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(1;2\right)\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm

d/ \(f\left(x\right)=5sin3x+x-10\)

\(f\left(0\right)=-10\)

\(f\left(4\pi\right)=4\pi-10\)

\(\Rightarrow f\left(0\right).f\left(4\pi\right)=-10\left(4\pi-10\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;4\pi\right)\) hay \(f\left(x\right)\) luôn có nghiệm

NV
19 tháng 10 2019

\(cosx=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

Có 2 điểm biểu diễn trên đường tròn lượng giác

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}} = \lim \frac{{{n^2}\left( {2 + \frac{6}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {8 + \frac{5}{{{n^2}}}} \right)}} = \lim \frac{{2 + \frac{6}{n} + \frac{1}{n}}}{{8 + \frac{5}{n}}} = \frac{2}{8} = \frac{1}{4}\)

b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 6{n^2} - 2}} = \lim \frac{{{n^3}\left( {\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( { - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}} \right)}} = \lim \frac{{\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{ - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}}} = \frac{{0 - 0 + 0}}{{ - 3 + 0 - 0}} = 0\).

c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}} = \lim \frac{{n\sqrt {4 - \frac{1}{n} + \frac{3}{{{n^2}}}} }}{{n\left( {8 - \frac{5}{n}} \right)}} = \frac{{\sqrt {4 - 0 + 0} }}{{8 - 0}} = \frac{2}{8} = \frac{1}{4}\).

d) \(\lim \left( {4 - \frac{{{2^{{\rm{n}} + 1}}}}{{{3^{\rm{n}}}}}} \right) = \lim \left( {4 - 2 \cdot {{\left( {\frac{2}{3}} \right)}^{\rm{n}}}} \right) = 4 - 2.0 = 4\).

e) \(\lim \frac{{{{4.5}^{\rm{n}}} + {2^{{\rm{n}} + 2}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{{4.5}^{\rm{n}}} + {2^2}{{.2}^{\rm{n}}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{5^n}.\left[ {4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}} \right]}}{{{{6.5}^n}}} = \lim \frac{{4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}}}{6} = \frac{{4 + 4.0}}{6} = \frac{2}{3}\).

g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^{\rm{n}}}}} = \lim \left( {2 + \frac{4}{{{{\rm{n}}^3}}}} \right).\lim {\left( {\frac{1}{6}} \right)^{\rm{n}}} = \left( {2 + 0} \right).0 = 0\).