Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
Gọi chiều rộng của mảnh đất là x (m), x > 0.
Vì diện tích của mảnh đất bằng 240 m2 nên chiều dài là: (m)
Nếu tăng chiều rộng 3m và giảm chiều dài 4m thì mảnh đất mới có chiều rộng là x + 3 (m), chiều dài là (240/X - 4) (m) và diện tích là:
(x + 3)( 240/x- 4) ( m2 )
Theo đầu bài ta có phương trình: (x + 3)(240/x - 4) = 240
Giải phương trình:
Từ phương trình này suy ra:
-4x2 – 12x + 240x + 720 = 240x hay:
x2 + 3x – 180 = 0
Giải phương trình: ∆ = 32 + 720 = 729, √∆ = 27
x1 = 12, x2 = -15
Vì x > 0 nên x2 = -15 không thỏa mãn điều kiện của ẩn. Do đó chiều rộng là 12m, chiều dài là: 240 : 12 = 20(m)
Trả lời: Mảnh đất có chiều rộng là 12m, chiều dài là 20m.
Bài giải:
Gọi chiều rộng của mảnh đất là x (m), x > 0.
Vì diện tích của mảnh đất bằng 240 m2 nên chiều dài là: (m)
Nếu tăng chiều rộng 3m và giảm chiều dài 4m thì mảnh đất mới có chiều rộng là x + 3 (m), chiều dài là ( - 4) (m) và diện tích là:
(x + 3)( - 4) ( m2 )
Theo đầu bài ta có phương trình: (x + 3)( - 4) = 240
Giải phương trình:
Từ phương trình này suy ra:
-4x2 – 12x + 240x + 720 = 240x hay:
x2 + 3x – 180 = 0
Giải phương trình: ∆ = 32 + 720 = 729, √∆ = 27
x1 = 12, x2 = -15
Vì x > 0 nên x2 = -15 không thỏa mãn điều kiện của ẩn. Do đó chiều rộng là 12m, chiều dài là: 240 : 12 = 20 (m)
Trả lời: Mảnh đất có chiều rộng là 12m, chiều dài là 20m.
Gọi 2 kích thước của hình chữ nhật là x và y(ĐK:x,y>0)
Diện tích của hình chữ nhật là xy
Nếu tăng chiều rộng thêm 3m và chiều dài giảm đi 4 m thì diện tích của hình chữ nhật là (x+3).(y-4).
Theo bài ra ta có hệ phương trình:
xy=240
{ ⇔x=12;y=20 Vậy chiều rộng HCN là 12,chiều dài HCN là 20
(x+3).(y-4)=xy
Gọi chiều dài là x (m), chiều rộng là y (m) (Đk: 240>y>x>0).
Ta có: xy=240 và
(x+3)(y-4)=240
Giải hệ phương trình trên ( rút thế), ta được chiều dài là 20 m, chiều rộng 12m.
Trình bày thì bạn theo cách giáo viên hướng dẫn nhé.Gọi chiều dài là x (m), chiều rộng là y (m) (Đk: 240>y>x>0).
Ta có: xy=240 và
(x+3)(y-4)=240
Giải hệ phương trình trên ( rút thế), ta được chiều dài là 20 m, chiều rộng 12m.
Trình bày thì bạn theo cách giáo viên hướng dẫn nhé.Gọi chiều dài là x (m), chiều rộng là y (m) (Đk: 240>y>x>0).
Ta có: xy=240 và
(x+3)(y-4)=240
Giải hệ phương trình trên ( rút thế), ta được chiều dài là 20 m, chiều rộng 12m.
Trình bày thì bạn theo cách giáo viên hướng dẫn nhé.Gọi chiều dài là x (m), chiều rộng là y (m) (Đk: 240>y>x>0).
Ta có: xy=240 và
(x+3)(y-4)=240
Giải hệ phương trình trên ( rút thế), ta được chiều dài là 20 m, chiều rộng 12m.
Trình bày thì bạn theo cách giáo viên hướng dẫn nhé.
Gọi x là chiều rộng mảnh đất. (x >0)
y là chiều dài mảnh đất. (y>0)
Ta có hệ PT xy = 300
(x-1) (y+4) = 336.
Bạn tự gải hẹ Pt đó đi rồi tìm kết quả.
Gọi chiều rộng của mảnh đất là x (m) ĐK : x > 0
Vì diện tích của mảnh đất là 240m2 nên chiều dài là 240/x (m)
Nếu tăng chiều rộng 3m và giảm chiều dài 4m thì
Do diện tích không đổi
nên ta có phương trình
(x + 3) (240/x - 4) = 240
giải phương trình trên ta có x1 = 12(TMĐK )
x2 = -15 ( loại )
vây chiều rộng mảnh đất là 12m ,chiều dài là 20m
Gọi chiều rộng của mảnh đất là x (m) ĐK : x > 0
Vì diện tích của mảnh đất là 240m2 nên chiều dài là 240/x (m)
Nếu tăng chiều rộng 3m và giảm chiều dài 4m thì
Do diện tích không đổi
nên ta có phương trình
(x + 3) (240/x - 4) = 240
giải phương trình trên ta có x1 = 12(TMĐK )
x2 = -15 ( loại )
vây chiều rộng mảnh đất là 12m ,chiều dài là 20m
Em kham khảo link này nhé.
Câu hỏi của Võ Đông Anh Tuấn - Toán lớp 9 - Học toán với OnlineMath
Gọi a là chiều dài, b là chiều rộng mảnh vườn ( a, b >0 )
Diện tích mảnh vườn: S= a.b = 45
Theo đề bài nếu tăng rộng 2m giảm dài 2m thì mảnh vườn trở thành hình vuông
=> a - 2 = b + 2
<=> a = b + 4
Thay vào công thức tính diện tích ta được:
S = a.b = b(b+4) = 45
<=> b^2 + 4b - 45 = 0
<=> b^2 - 5b + 9b - 45 = 0
<=> (b - 5)(b + 9) = 0
<=> b = 5 hoặc b = -9
Vì b > 0 nên b = 5
Vậy a = b+4 = 5 + 4 = 9
Vậy chiều dài là 9m, rộng là 4m.
Xin lỗi em trình bày lượm thượm ạ
Gọi độ dài của mỗi cạnh của hình chữ nhật là x, và y (m)
Đk : x, y > 0
Tổng độ dài 2 cạnh là:
x + y = 24/2
=> x + y = 12 (1)
Nếu tăng độ dài 1 cạnh (x) lên 2m và giảm cạnh còn lại (y) 1m thì diện tích mảnh đất tăng thêm 1m², ta có:
(x + 2).(y - 1) = xy + 1
=> xy - x + 2y - 2 = xy + 1
=> 2y - x = 3 (2)
Từ (1) và (2), ta có hệ phương trình:
{ x + y = 12
2y - x = 3
=> { x = 12 - y
2y - x + x + y = 3 + 12
=> { x = 12 - y
3y = 15
=> { x = 7 (tm)
y = 5 (tm)
Vậy độ dài các cạnh của hình chữ nhật là 7m và 5m.
Gọi chiều dài mảnh đất là x(m), chiều rộng mảnh đất là y(m)
(Điều kiện: x>0; y>0;x>y)
Diện tích mảnh đất là 60m2 nên xy=60
Nếu giảm bớt mỗi cạnh đi 2m thì diện tích còn lại là 32m2 nên ta có:
(x-2)(y-2)=32
=>xy-2x-2y+4=32
=>60-2x-2y+4=32
=>64-2(x+y)=32
=>2(x+y)=32
=>x+y=16
mà xy=60
nên x,y là các nghiệm của phương trình:
\(a^2-16a+60=0\)
=>(a-6)(a-10)=0
=>\(\left[{}\begin{matrix}a=6\\a=10\end{matrix}\right.\)
mà x>y
nên x=10;y=6
vậy: Chiều dài là 10m; chiều rộng là 6m