Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án C
Gọi M, N lần lượt là trung điểm của AB, CD
Ta có: Δ B C D = Δ A C D ⇔ B N = A N ⇒ Δ A B N cân
⇒ M N ⊥ A B
Tương tự, ta chứng minh được M N ⊥ C D ⇒ M N là đoạn vuông chung của AB và
CD.
Xét tam giác ABN có: A N = B N = a 3 2 ; A B = a
M N = A N 2 − A M 2 = A N 2 − A B 2 4 = a 3 2 2 − a 2 4 = a 2 2
Vậy khoảng cách giữa hai đường thẳng AB, CD là: a 2 2

Đáp án B.
Gọi M,N lần lượt là trung điểm của AD và BC. Ta có ∆ A B D và ∆ A C D đều cạnh bằng a nên B M = C M = a 3 2 ⇒ ∆ M B C cân tại M và MN là đường cao của ∆ M B C ⇒ M N ⊥ B C
Tương tự, ∆ N A D cân tại N nên NM là đường cao của ∆ N A D ⇒ N M ⊥ A D
Suy ra MN là đoạn vuông góc cung của AD và BC.
Vậy d A D ; B C = M N = B M 2 - B C 2 2 = a 3 2 2 - a 2 2 = a 2 2
Đáp án B.
Gọi ABCD là tứ diện đều cạnh a.
Gọi M là trung điểm của AB và N là trung điểm của CD.
Do NA=NB nên tam giác NAB cân ⇒ M N ⊥ A B .
Do MC=MD nên tam giác MCD cân ⇒ M N ⊥ C D .
Suy ra MN là đoạn vuông góc chung của AB và CD.
Tam giác BMN vuông tại M
⇒ M N = B N 2 - B M 2 = a 3 2 2 - a 2 2 = 2 a 2 4 = a 2 2 .
Vậy d ( A B , C D ) = M N = a 2 2 . Vậy ta chọn B.