Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}=>\frac{1}{2}A=\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{304}\)
\(=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{16.19}=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{16.19}\right)=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{16}-\frac{1}{19}\right)=\frac{1}{3}.\left(1-\frac{1}{19}\right)=\frac{1}{3}.\frac{18}{19}=\frac{6}{19}\)=> A= \(\frac{6}{19}:\frac{1}{2}=\frac{12}{19}\)
đúng nha
C=\(\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}\)
trình bày mới tk
\(C=\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}\)
\(C=\frac{1}{1.2}+\frac{1}{2.7}+\frac{1}{7.5}+\frac{1}{5.13}+\frac{1}{13.8}+\frac{1}{8.19}\)
\(C=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+\frac{2}{13.16}+\frac{2}{16.19}\)
\(C=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\right)\)
\(C=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}\right)\)
\(C=\frac{2}{3}.\left(1-\frac{1}{19}\right)\)
\(C=\frac{2}{3}.\frac{18}{19}=\frac{12}{19}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-...-\frac{1}{11.13}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=1-\frac{1}{10}-\frac{1}{2}.\left(1-\frac{1}{13}\right)=\frac{9}{10}-\frac{6}{13}=\frac{57}{130}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{90}-\frac{1}{3}-\frac{1}{15}-.....-\frac{1}{143}\)
\(=\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{90}\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+.....+\frac{1}{143}\right)\)
\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{9.10}\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{11.13}\right)\)
\(=\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)\(=\left(\frac{1}{1}-\frac{1}{10}\right)-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{13}\right)=\frac{9}{10}-\frac{6}{13}=\frac{117}{130}-\frac{78}{130}=\frac{39}{130}=\frac{3}{10}\)
\(B=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
\(=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{5}{39}\)
Ta thấy mỗi tổng trên là tích của hai số tự nhiên liên tiếp.
\(a_1=1.2\Rightarrow3a_1=1.2.3\)\(\Rightarrow3a_1=1.2.3-0.1.2\).
\(a_2=2.3\Rightarrow3a_2=2.3.3\)\(\Rightarrow3a_2=2.3.4-1.2.3\).
.....
\(a_{99}=99.100\Rightarrow3a_{99}=3.99.100\)\(\Rightarrow3a_{99}=98.99.100-97.98.99\).
Ta có:
\(3A=1.2.3+2.3.3+3.4.3+....+99.100.3\)
\(=\)\(1.2.3-0.1.2+2.3.4-1.2.3+........+98.99.100-97.98.100\)
\(=98.99.100\)
Suy ra: \(A=\frac{98.99.100}{3}=323400\).
B=1.2+2.3+3.4+...+99.100
⇒3B=1.2.3+2.3.3+....+99.100.3
⇒3B=1.2.3+2.3.(4−1)+...+99.100.(101−98)
⇒3B=1.2.3+2.3.4−1.2.3+...+99.100.101−98.99.100
⇒3B=99.100.101
\(⇒\)
Câu 2:
a: x-158=32
=>x=158+32
=>x=190
b: \(x\cdot24=264\)
=>\(x=\dfrac{264}{24}\)
=>x=11
c: \(6x+9=3^7:3^4\)
=>\(6x+9=3^3\)
=>6x+9=27
=>6x=18
=>x=18/6=3
Câu 1:
a: \(86\cdot19+14\cdot19\)
\(=19\left(86+14\right)\)
\(=19\cdot100=1900\)
b: \(4\cdot\left(-5\right)^2-104\cdot\left(-5\right)^2\)
\(=4\cdot25-104\cdot25\)
\(=25\left(4-104\right)=-100\cdot25=-2500\)
c: \(7\cdot\left(-2\right)\cdot8\left(-5\right)\)
\(=7\cdot2\cdot8\cdot5\)
\(=56\cdot10=560\)
d: \(59-\left[59+\left(-76\right)\right]\)
\(=59-59+76\)
=76
khó ??????
Ai bảo ngu