\(10.\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

Bài 1

a.\(\frac{-3}{4}\)-y:\(\frac{1}{5}\)=\(\frac{9}{28}\)

                y:\(\frac{1}{5}\)=\(\frac{-15}{14}\)

                          y= \(\frac{-3}{14}\)

b.5x + 5x+2=650

5x . 1 + 5x + 52=650

5x(1+25)=650

5x.26=650

5x=25

x=2

25 tháng 12 2019

bà ơi là bà x đâu mà tìm

25 tháng 12 2019

Lê thị thu phương ơi x là số mũ nha bạn

Cậu tính từng bước là ra thui

\(B=81.\left(\frac{12-\frac{12}{7}-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right).\frac{158158158}{711711711}\)

\(\Leftrightarrow B=81.\left(\frac{12\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{5\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{6\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\right).\frac{158\left(1001001\right)}{711\left(1001001\right)}\)

\(\Leftrightarrow B=81\left(\frac{12}{3}:\frac{5}{6}\right).\frac{158}{711}\)

\(\Leftrightarrow B=81\left(3.\frac{6}{5}\right).\frac{2}{9}\)

\(\Leftrightarrow B=81.\frac{18}{5}.\frac{2}{9}\)

\(\Leftrightarrow B=\frac{324}{5}\)

Hok tốt!!

21 tháng 4 2016

ket qua bang 29 nha ban

27 tháng 7 2017

ket qua bang -4/3 nha ban

13 tháng 1 2019

CHO MÌNH BỔ SUNG CÂU HỎI: Tìm số nguyên x, biết:

29 tháng 8 2020

Bài làm:

Xét: \(\frac{1}{5^2}>\frac{1}{5.6}\) ; \(\frac{1}{6^2}>\frac{1}{6.7}\) ; ... ; \(\frac{1}{100^2}>\frac{1}{100.101}\)

=> \(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\) (1)

Lại có: \(\frac{1}{5^2}< \frac{1}{4.5}\) ; \(\frac{1}{6^2}< \frac{1}{5.6}\) ; ... ; \(\frac{1}{100^2}< \frac{1}{99.100}\)

=> \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\) (2)

Từ (1) và (2) => \(\frac{1}{6}< A< \frac{1}{4}\)