Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em nến gõ bằng công thức toán học em nhé. Như vậy mọi người nới hiểu đúng đề bài để trợ giúp cho em một cách tốt nhất em ạ!
0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)
\(b,S6=1-5^{100}\\ 1-S6=5^{100}\)
=> 5100 chia 6 du 1
Bài 1:
a: \(S=1-5+5^2-5^3+...+5^{98}-5^{99}\)
=>\(5S=5-5^2+5^3-5^4+...+5^{99}-5^{100}\)
=>\(6S=5-5^2+5^3-5^4+...+5^{99}-5^{100}+1-5+5^2-5^3+...+5^{98}-5^{99}\)
=>\(6S=-5^{100}+1\)
=>\(S=\dfrac{-5^{100}+1}{6}\)
b: S=1-5+52-53+...+598-599 là số nguyên
=>\(\dfrac{-5^{100}+1}{6}\in Z\)
=>\(-5^{100}+1⋮6\)
=>\(5^{100}-1⋮6\)
=>\(5^{100}\) chia 6 dư 1
a) \(S=5+5^2+...+5^{2006}\)
\(5S=5^2+5^3+...+5^{2007}\)
\(5S-S=5^2+5^3+5^4+...+5^{2007}-5-5^2-5^3-...-5^{2006}\)
\(4S=5^{2007}-5\)
\(S=\dfrac{5^{2007}-5}{4}\)
b) \(S=5+5^2+5^3+...+5^{2006}\)
\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{2003}+5^{2006}\right)\)
\(S=5\cdot\left(1+5^3\right)+5^2\cdot\left(1+5^3\right)+...+5^{2003}\cdot\left(1+5^3\right)\)
\(S=\left(1+5^3\right)\cdot\left(5+5^2+...+5^{2003}\right)\)
\(S=126\cdot\left(5+5^2+...+5^{2003}\right)\) ⋮ 126
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
=(1-2)+(3-4)+...+(51-52)+53
= -1 + -1 + ... + -1 + 53
= -1 x (52:2)+53
= -26 + 53
=27
a: \(7\cdot\left(-2\right)^3-12\cdot\left(-5\right)+\left(-17\right)\)
\(=7\cdot\left(-8\right)+60-17\)
=-56+43
=-13
b: \(1632-37-\left(-157\right)-163-1532\)
\(=\left(1632-1532\right)-37-163+157\)
=100-200+157
=57
c: \(47\cdot\left(-918\right)+\left(-53\right)\cdot918\)
\(=918\left(-47\right)+\left(-53\right)\cdot918\)
\(=918\cdot\left(-47-53\right)\)
\(=918\left(-100\right)=-91800\)
d: \(\left(-52\right)\cdot\left(-281\right)+\left(-52\right)\cdot181\)
\(=\left(-52\right)\left(-281+181\right)\)
\(=\left(-52\right)\cdot\left(-100\right)=5200\)
a: 7⋅(−2)3−12⋅(−5)+(−17)7⋅(−2)3−12⋅(−5)+(−17)
=7⋅(−8)+60−17=7⋅(−8)+60−17
=-56+43
=-13
b: 1632−37−(−157)−163−15321632−37−(−157)−163−1532
=(1632−1532)−37−163+157=(1632−1532)−37−163+157
=100-200+157
=57
c: 47⋅(−918)+(−53)⋅91847⋅(−918)+(−53)⋅918
=918(−47)+(−53)⋅918=918(−47)+(−53)⋅918
=918⋅(−47−53)=918⋅(−47−53)
=918(−100)=−91800=918(−100)=−91800
d: (−52)⋅(−281)+(−52)⋅181(−52)⋅(−281)+(−52)⋅181
=(−52)(−281+181)=(−52)(−281+181)
=(−52)⋅(−100)=5200=(−52)⋅(−100)=5200
a) \(S=1+2+2^2+..+2^{2022}\)
\(2S=2+2^2+2^3+...+2^{2023}\)
\(2S-S=2+2^2+2^3+...+2^{2023}-1-2-2^2-...-2^{2022}\)
\(S=2^{2023}-1\)
b) \(S=3+3^2+3^3+...+3^{2022}\)
\(3S=3^2+3^3+...+3^{2023}\)
\(3S-S=3^2+3^3+....+3^{2023}-3-3^2-...-3^{2022}\)
\(2S=3^{2023}-3\)
\(\Rightarrow S=\dfrac{3^{2023}-3}{2}\)
c) \(S=4+4^2+4^3+...+4^{2022}\)
\(4S=4^2+4^3+...+4^{2023}\)
\(4S-S=4^2+4^3+...+4^{2023}-4-4^2-...-4^{2022}\)
\(3S=4^{2023}-4\)
\(S=\dfrac{4^{2023}-4}{3}\)
d) \(S=5+5^2+...+5^{2022}\)
\(5S=5^2+5^3+...+5^{2023}\)
\(5S-S=5^2+5^3+...+5^{2023}-5-5^2-...-5^{2022}\)
\(4S=5^{2023}-5\)
\(S=\dfrac{5^{2023}-5}{4}\)