Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{x-1}=\frac{1}{243}\)
\(\Rightarrow3^x=243\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
a) \(8⋮\left(x-2\right)\) \(\)
Ta có : 8 chia hết cho x - 2
=> x - 2 thuộc Ư(8) = { 1 ; 2 ; 4 ; 8 }
=> x thuộc { 3 ; 4 ; 6 ; 10 }
Vậy x thuộc { 3 ; 4 ; 6 ; 10 }
b) \(21⋮\left(2x+5\right)\)
Ta có : 21 chia hết cho 2x + 5
=> 2x + 5 thuộc Ư(21) = { 1 ; 3 ; 7 ; 21 }
=> 2x thuộc { - 4 ; - 2 ; 2 ; 16 }
=> x thuộc { - 2 ; - 1 ; 1 ; 8 }
Vậy x thuộc { - 2 ; - 1 ; 1 ; 8 }
c) \(4-\left(27-3\right)=x-\left(13-4\right)\)
\(4-24=x-9\)
\(\Rightarrow-20=x-9\)
\(x=-20+9\)
\(x=-11\)
Vậy \(x=-11\)
d) \(7-x=8+\left(-7\right)\)
\(7-x=1\)
\(x=7-1\)
\(x=6\)
Vậy \(x=6\)
e) \(2x-6=\left(-3\right)+\left(-7\right)\)
\(2x-6=-10\)
\(2x=-10+6\)
\(2x=-4\)
\(x=-4:2\)
\(x=-2\)
Vậy \(x=-2\)
\(\frac{3x-11}{2}-\frac{x-3}{3}=\frac{1}{6}\)
\(\frac{3\times\left(3x-11\right)}{3\times2}-\frac{2\times\left(x-3\right)}{2\times3}=\frac{1}{6}\)
\(\frac{9x-33}{6}-\frac{2x-6}{6}=\frac{1}{6}\)
\(\frac{\left(9x-33\right)-\left(2x-6\right)}{6}=\frac{1}{6}\)
\(9x-33-2x+6=1\)
\(\left(9x-2x\right)-\left(33-6\right)=1\)
\(7x-27=1\)
\(7x=1+27\)
\(7x=28\)
\(x=\frac{28}{7}\)
\(x=4\)
Chúc bạn học tốt
\(PT\Leftrightarrow\frac{3.\left(3x-11\right)-2.\left(x-3\right)}{6}=\frac{1}{6}\)
<=> 3.(3x - 11) - 2.(x - 3) = 1
<=> 9x - 33 - 2x + 6 = 1
<=> 7x = 28
<=> x = 4
\(C\in\left\{1;3\right\}\)
\(D\in\left\{1;4\right\}\)
\(E\in\left\{2;3\right\}\)
\(F\in\left\{2;4\right\}\)
\(\frac{2x+1}{3}=\frac{5}{2}\)
\(2x+1=\frac{5.3}{2}=\frac{15}{2}\)
2x= 15/2 - 1 = 13/2
x = 13/2 : 2
x = 13/4
b) 2x + 2x+1 + 2x+2 + 2x+3 = 480
2x.(1+ 2 +22 + 23) = 480
2x . 15 = 480
2x = 480 : 15 = 32
2x = 25 => x = 5
c) \(\left(\frac{3x}{7}+1\right):\left(-4\right)=-\frac{1}{28}\)
\(\frac{3x}{7}+1=\frac{-1}{28}.\left(-4\right)=\frac{1}{7}\)
\(\frac{3x}{7}=\frac{1}{7}-1=-\frac{6}{7}\)
< = > 3x= -6 => x = -2
Chứng Minh:C=\(3^0+3^2+3^4+...+3^{2002}⋮7\)
Nhân C với \(3^2\)ta có:
\(9S=3^2+3^4+3^6+...+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-1\)
\(\Rightarrow S=\dfrac{3^{2004}-1}{8}\)
Chứng minh:
Ta có:\(3^{2004}-1=\left(3^6\right)^{334-1}=\left(3^6-1\right).a=7.104.a\)
\(\)UCLN(7;8)=1
\(\Rightarrow S⋮7\)
Sửa lại 1 chút!
Chứng minh: C= \(3^0+3^2+3^4+3^6+...+3^{2002}\) chia hết cho 7
\(S=\dfrac{3}{5.7}+\dfrac{3}{7.9}+....+\dfrac{3}{59.61}\)
\(S=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+......+\dfrac{1}{59}-\dfrac{1}{61}\)
\(S=\left(\dfrac{1}{5}-\dfrac{1}{7}\right)+\left(\dfrac{1}{7}-\dfrac{1}{9}\right)+...+\left(\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(S=\dfrac{1}{5}-\dfrac{1}{61}\)
\(S=\dfrac{56}{305}\)
Vậy S = \(\dfrac{56}{305}\)
\(S=\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)
\(S=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(S=\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=\dfrac{3}{2}.\dfrac{56}{305}=\dfrac{84}{305}\)
\(H=\left(9\frac{3}{8}+7\frac{3}{8}\right)+4,03=16\frac{3}{8}+4,03=16,375+4,03=20,405\)
\(I=10101.\left(\frac{5}{111111}+\frac{2,5}{111111}-\frac{4}{111111}\right)=10101.\frac{3,5}{111111}=\frac{7}{22}\)
giúp mình đi@@@@