K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

\(\text{A= 1-2-3+4+5-6-7+8+9-...+1992+1993-1994}\)

\(A=\left(1-2-3+4\right)+...+\left(1989-1990-1992+1992\right)+1993-1994\)

\(A=0+0+...+0+1993-1994\)

\(A=-1\)

22 tháng 2 2017

\(A=1-2-3+4+5-6-7+8+...+1992+1993-1994\)

\(A=\left(1-2-3+4\right)+...+\left(1989-1990-1991+1992\right)+1993-1994\)( 498 nhóm dư 2 )

\(A=0+0+...+0+1993-1994\)

\(A=1993-1994=-1\)

Vậy A = -1

AH
Akai Haruma
Giáo viên
29 tháng 12 2021

Lời giải:
a. 

$A=(1-3)+(5-7)+(9-11)+...+(2001-2003)+2005$

$=(-2)+(-2)+(-2)+...+(-2)+2005$

$=(-2).501+2005=-1002+2005=1003$

b.

$B=(1-2-3+4)+(5-6-7+8)+...+(1989-1990-1991+1992)+(1993-1994)$

$=0+0+....+0+(1993-1994)=0+(-1)=-1$

12 tháng 3 2020

A=1-3+5-7+....+2001-2003+2005

A=[(1-3)+(5-7)+.....+(2001-2003)]+2005

A=[(-2)+(-2)+....+(-2)]+2005

Vì từ 1 đến 2003 có: 1002 số hạng => có 501 cặp => có 501 số -2

A=(-2) x 501 +2005

A=-1002+2005

A=1003

A=1-3+5-7+...+2001-2003+2005

A=(1-3)+(5-7)+....+(2001-2003)+2005

A=(-2)+(-2)+...+(-2)+2005

A=(-2).501+2005

A=(-1002)+2005

A=1003

B=1-2-3+4+5-6-7+8+...+1993-1994

B=(1-2-3+4)+(5-6-7+8)+....+(1989-1990-1991+1992)+(1993-1994)

B=0+0+...+0+(-1)

B=(-1)

C=1+2-3-4+5+6-7-8+9+...+2002-2003-2004+2005+2006

C=(1+2-3-4)+(5+6-7-8)+....+(2001+2002-2003-2004)+(2005+2006)

C=(-4)+(-4)+....+(-4)+4011

C=(-4).501+4011

C=(-2004)+4011

C=2007

22 tháng 2 2017

\(A=1-2-3+4+5-6-7+8+9-...-1992-1993\)

\(A=\left(1-2-3+4\right)+\left(5-6-7+8\right)+\left(9-10-11+12\right)+...+\left(1989-1990-1991+1992\right)-1993\)\(A=0+0+0+...+0-1993\)\(A=0-1993\)

\(A=-1993\)

Vậy \(A=-1993\)

22 tháng 11 2020

2) \(B=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(1989-1990-1991+1992\right)+1993-1994\)

\(=0+0+...+0+1993-1994=0+1993-1994=-1\)