Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+2^3+...+2^{2020}+2^{2021}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{2020}+2^{2021}\right)\)
\(=3+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)
\(=3+2^2.3+...+2^{2020}.3⋮3\)
VẬY \(S⋮3\)
Trả lời :...........................................
SCSH: (2021 - 1) : 1 = 2020
Tổng: (2021 + 1) : 2 = 1011
Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhé
Bài 2:
Ta thấy: 52 > 4.5
62 > 5.6
72 > 6.7
....
20172 > 2016.2017
\(\Rightarrow\)\(\frac{1}{5^2}< \frac{1}{4.5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
\(\frac{1}{7^2}< \frac{1}{6.7}\)
....
\(\frac{1}{2017^2}< \frac{1}{2016.2017}\)
Cộng vế với nhau, ta có:
\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2017^2}\) < \(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{2016.2017}\)
\(\Rightarrow\)A < \(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(\Rightarrow\)A < \(\frac{1}{4}-\frac{1}{2017}\)
\(\Rightarrow\)A < \(\frac{1}{4}\)( vì \(\frac{1}{2017}>0\))
k giúp mik ✅
43.25.16=(22)3.25.24=26.25.24=215
32.64.82=25.26.26=217
=> A=217:215=217-15=22=4
Đáp số: A=4
\(\frac{32.64.8^2}{4^3\cdot2^5\cdot16}=\frac{2^5.2^6.2^6}{2^6.2^5.2^3}\)
\(=\frac{2^{5+6+6}}{2^{6+5+3}}=\frac{2^{17}}{2^{14}}=2^{17-14}=2^3=8\)
Mình giải thích thêm nha
\(8^2=\left(2^3\right)^2=2^6\)
\(4^3=\left(2^2\right)^3=2^6\)