Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\left(2^{17}+17^2\right)\cdot\left(9^{15}-15^9\right)\cdot\left(4^2-2^4\right)\)
=\(\left(2^{17}+17^2\right)\cdot\left(9^{15}-15^9\right)\cdot\left(16-16\right)\)
=\(\left(2^{17}+17^2\right)\cdot\left(9^{15}-15^9\right)\cdot0\)=0
b) \(\left(7^{1997}-7^{1995}\right):\left(7^{1994}\cdot7\right)\)
=\(\left(7^{1995}\left(7^2-1\right)\right):7^{1995}\)
=\(7^2-1\)=\(49-1\)=\(48\)
c Giống câu a
a, Xét : \(\left(2x-1\right)^4=1\Leftrightarrow\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)
Xét : \(\left(81.2\right)\left(x-2\right)^2=1\Leftrightarrow162\left(x-2\right)^2=1\Leftrightarrow\left(x-2\right)^2=\frac{1}{162}\)
\(\orbr{\begin{cases}x-2=\sqrt{\frac{1}{162}}\\x-2=-\sqrt{\frac{1}{162}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{36+\sqrt{2}}{18}\\x=\frac{36-\sqrt{2}}{18}\end{cases}}\)
1,
\(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\) và \(x^4.y^4=81\)
Đặt \(x^2=a\left(a\ge0\right);y^2=b\left(b\ge0\right)\)
Ta có \(\frac{a+b}{10}=\frac{a-2b}{7}\)và \(a^2b^2=81\)
:\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{9}=b\Rightarrow a=9b\)
Do \(a^2b^2=81\)nên \(\left(9b^2\right).b^2=81\Rightarrow81b^4=81\Rightarrow b^4=1\Rightarrow b=1\left(b\ge0\right)\)
Suy ra a = 9 . 1 = 9
Ta có x2 = 9 và y2 = 1. Suy ra x = ±3, y = ±1.
\(x^4y^4=81\Rightarrow x^2y^2=9\Rightarrow x^2=\frac{9}{y^2}\)
\(\Rightarrow\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\Leftrightarrow\frac{y^4+9}{10y^2}=\frac{9-2y^4}{7y^2}\Leftrightarrow7\left(y^4+9\right)=10\left(9-2y^4\right)\Leftrightarrow y^4=1\Leftrightarrow y=\pm1\)
\(\Rightarrow x^4=81\Leftrightarrow x=\pm3\)
x | y | 2012x+2013y |
1 | 3 | 8051 |
1 | -3 | -4027 |
-1 | 3 | 4027 |
-1 | -3 | -8051 |
\(=\frac{2^4\cdot5^4\cdot3^4-2^4.3^2.5^2}{2^8\cdot3^3\cdot5^2}=\frac{2^4\cdot5^2\cdot3^2\left(5^2\cdot3^2-1\right)}{2^4\cdot3^2\cdot5^2\cdot2^4\cdot3}=\frac{15^2-1}{2^4\cdot3}\)
Nếu muốn thì nhân ra xong trừ rồi rút gọn sẽ được ps tối giản là 14/3