Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =48+174-48-74=100
b: =-123+23+77-257-43
=-100-200-43=-343
c: \(=\left(-57+47\right)+\left(-159+169\right)=-10+10=0\)
d: \(=100\cdot\left(-47\right)+53\cdot\left(-100\right)\)
\(=100\cdot\left(-100\right)=-10000\)
Bài 35 :
\(A=\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(A=\frac{2^{10}.\left(13+65\right)}{2^8.104}\)
\(A=\frac{2^8.2^2.98}{2^8.104}\)
\(A=\frac{2^8.4.98}{2^8.4.26}\)
\(A=\frac{49}{13}\)
Vậy \(A=\frac{49}{13}\)
\(B=\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\)
\(B=\frac{11.3^{29}-9^{15}}{2^2.\left(3^{14}\right)^2}\)
\(B=\frac{11.3^{29}-9^{15}}{2^2.3^{28}}\)
\(B=\frac{11.3^{29}-\left(3^2\right)^{15}}{4.3^{28}}\)
\(B=\frac{11.3^{29}-3^{30}}{4.3^{28}}\)
\(B=\frac{11.3^{29}-3^{29}.3}{4.3^{28}}\)
\(B=\frac{3^{29}.\left(11-3\right)}{4.3^{28}}\)
\(B=\frac{3^{29}.8}{4.3^{28}}\)
\(B=\frac{3^{28}.3.4.2}{4.3^{28}}\)
\(B=3.2\)
\(B=6\)
Vậy B = 6
A = 2^10 . 13 + 2^10 . 65 / 2^8 . 104
= 2^10 ( 13 + 65 ) / 2^8 . 104 = 2^10 . 78 / 2^8 . 104 = 2^8 . 2^2 . 78 / 2^8 . 104 = 2^8 . 4 . 78 / 2^8 . 104 = 2^8 . 312 / 2^8 . 104
= 312/104
= 3
B = 11 . 3^22 . 3^7 - 9^15 / ( 2.3^14)^2
= 11 . 3^29 - (3^2)^15 / ( 3.2^14)^2
= 11 . 3^29 - 3^30 / ( 3. 2 )^28
= ( 8 + 3 ) . 3^29 - 3^30 / ( 3. 2)^28
= 8 . 3^29 + 3.3^29 - 3^30 / ( 3.2)^28
= 8 . 3^29 + 3^30 - 3^30 / ( 3 . 2)^28
= 8 . 3^29 / 3^28 . 2^28
= 2^3 . 3 / 2^28
= 3/ 2^25
Gợi ý
bn thực hiện phép tính tử mẫu bình thường , khi ra nhưng số trùng nhau bn gạch ra nháp cho đến nhưng số tối giản là ra nha
chúc bn
học tốt
A = \(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
= \(\frac{3^{10}\left(11+5\right)}{3^9.2^4}\)
= \(\frac{3^{10}.16}{3^9.2^4}\)
= \(\frac{3^{10}.2^4}{3^9.2^4}=3\)
B = \(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
= \(\frac{2^{10}\left(13+65\right)}{2^8.104}\)
= \(\frac{2^{10}.78}{2^8.104}\)
= \(\frac{2^{10}.13.2.3}{2^8.2^3.13}\)
= \(\frac{2^{11}.13.3}{2^{11}.13}=3\)
\(1)A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\)
\(=\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}\)
\(=\frac{2}{4}=\frac{1}{2}\)
\(2)B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)
\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}.\frac{4.4}{4.5}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)
\(=\frac{1.2.3.4}{2.3.4.5}=\frac{1}{5}\)
\(3)C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)
\(=\frac{2.2.3.3.4.4.5.5}{1.3.2.4.3.5.4.6}\)
\(=\frac{2.5}{1.6}=\frac{2.5}{1.3.2}=\frac{5}{3}\)
\(4)D=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}\right)\)
\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{6}{30}-\frac{5}{30}-\frac{1}{30}\right)\)
\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right).0=0\)
\(5)M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right)\) \(N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\)
\(=\frac{58}{7}-\left(\frac{31}{9}+\frac{30}{7}\right)\) \(=\left(\frac{92}{9}+\frac{13}{5}\right)-\frac{56}{9}\)
\(=\frac{58}{7}-\left(\frac{217}{63}+\frac{270}{63}\right)\) \(=\left(\frac{460}{45}+\frac{117}{45}\right)-\frac{280}{45}\)
\(=\frac{58}{7}-\frac{487}{63}\) \(=\frac{577}{45}-\frac{280}{45}\)
\(=\frac{522}{63}-\frac{487}{63}=\frac{5}{9}\) \(=\frac{33}{5}\)
\(P=M-N\)
\(\Rightarrow P=\frac{5}{9}-\frac{33}{5}\)
\(\Rightarrow P=\frac{25}{45}-\frac{297}{45}\)
\(\Rightarrow P=\frac{-272}{45}\)
Vậy P = \(\frac{-272}{45}\)
\(6)E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
\(=\frac{5}{11}+\frac{5}{22}-\left(10101.\frac{4}{111111}\right)\)
\(=\frac{10}{22}+\frac{5}{22}-\frac{4}{11}\)
\(=\frac{15}{22}-\frac{8}{22}=\frac{7}{22}\)
\(7)F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
\(=\frac{1\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}.\frac{3\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{64}\right)}{1\left(1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}\right)}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{16}{64}-\frac{4}{64}+\frac{1}{64}-\frac{1}{256}\right)}{1\left(\frac{64}{64}-\frac{16}{64}+\frac{4}{64}-\frac{1}{64}\right)}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{13}{64}-\frac{1}{256}\right)}{1.\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{52}{256}-\frac{1}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{51}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{\frac{153}{256}}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{153}{256}:\frac{51}{64}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3}{4}+\frac{5}{8}\)
\(=\frac{3}{8}+\frac{5}{8}=1\)
Xin lỗi tớ đã làm hết buổi tối mà chỉ có 7 bài mong bạn thông cảm cho mình nhé !
a, A = \(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(A=\frac{2^{10}\left(13+65\right)}{2^8.2^2.26}=\frac{2^{10}.78}{2^{10}.26}=\frac{78}{26}=3\)
Vậy A = 3
b, \(B=\frac{72^3.54^2}{108^4}=\frac{72^3.54^2}{\left(54.2\right)^4}=\frac{72^3.54^2}{54^4.2^4}=\frac{72^3}{54^2.2^4}=\frac{\left(8.9\right)^3}{\left(6.9\right)^2.2^4}\)
\(=\frac{\left(2^3\right)^3.9^3}{6^2.9^2.2^4}=\frac{2^9.9^3}{2^2.3^2.9^2.2^4}=\frac{2^9.9^3}{2^6.9^3}=\frac{2^9}{2^6}=2^3=8\)
Vậy B = 8
c, \(C=\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}=\frac{11.3^{29}.3^{30}}{2^2.3^{28}}=\frac{11.3^{29}.3.3^{29}}{2^2.3^{28}}=\frac{\left(11-3\right)3^{29}}{2^2.3^{28}}\)
\(=\frac{2^3.3^{29}}{2^2.3^{28}}=2.3=6\)
Vậy C = 6
d, \(D=\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}=\frac{\left(3.2^{18}\right)^2}{11.2^{35}-\left(2^4\right)^9}=\frac{3^2.2^{36}}{11.2^{35}-2^{36}}=\frac{3^2.2^{36}}{\left(11-2\right)2^{35}}=\frac{3^2.2}{9}=2\)
Vậy D = 2
1: \(=\dfrac{2^{20}\cdot3^2+2^{24}}{2^{16}\cdot2^2\cdot5^2}=\dfrac{2^{20}\left(3^2+2^4\right)}{2^{18}\cdot5^2}=4\)
2: \(=\dfrac{2^5\left(2^8+1\right)}{2^2\left(2^8+1\right)}=2^3=8\)
3: \(=\dfrac{11\cdot3^{29}-3^{30}}{2^2\cdot3^{28}}=\dfrac{3^{29}\cdot8}{2^2\cdot3^{28}}=2\cdot3=6\)