\(1-\dfrac{1}{2}+2-\dfrac{2}{3}+3-\dfrac{3}{4}+4-\dfrac{1}{4}-\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)

b, Ta có :

\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)

c, Ta có :

\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)

6 tháng 10 2018

Mình làm rồi đó !!!!!Trần Thị Hương Lan

30 tháng 9 2017

a/ Đặt :

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+.........+\dfrac{1}{3^{50}}\)

\(\Leftrightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+.......+\dfrac{1}{3^{49}}\)

\(\Leftrightarrow3A-A=\left(1+\dfrac{1}{3}+....+\dfrac{1}{3^{49}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+....+\dfrac{1}{3^{50}}\right)\)

\(\Leftrightarrow2A=1-\dfrac{1}{3^{50}}\)

còn sao nx thì mk chịu =.=

28 tháng 6 2017

a

= { 1*( 1+1/2+1/3+1/4) } / { 1 * ( 1-1/2 +1/3-1/4)} : { 3*(1+1/2+1/3+1/4)} / { 2*( 1-1/2 +1/3-1/4)}

Sau đó bn tự tính ra nhé cứ tính nhu bình thường sẽ ra.

Mà mình thấy máy câu này yêu cầu tính chứ có bảo tính theo cách hợp lí đâu? Vì thế bn cứ lấy máy tính tính như bình thường là được .

20 tháng 7 2017

Kết quả là : C1=\(\dfrac{2}{3}\)

29 tháng 1 2019

\(a)\dfrac{11}{125}-\dfrac{17}{18}-\dfrac{5}{7}+\dfrac{4}{9}+\dfrac{17}{14}\)

\(=\dfrac{11}{125}-\left(\dfrac{17}{18}-\dfrac{4}{9}\right)-\left(\dfrac{5}{7}-\dfrac{17}{14}\right)\)

\(=\dfrac{11}{125}-\left(\dfrac{17}{18}-\dfrac{8}{18}\right)-\left(\dfrac{10}{14}-\dfrac{17}{14}\right)\)

\(=\dfrac{11}{125}-\dfrac{9}{18}-\left(-\dfrac{7}{14}\right)\)

\(=\dfrac{11}{125}-\dfrac{1}{2}+\dfrac{1}{2}\)

\(=\dfrac{11}{125}\)

\(b)1-\dfrac{1}{2}+2-\dfrac{2}{3}+3-\dfrac{3}{4}+4-\dfrac{1}{4}-3-\dfrac{1}{3}-2-\dfrac{1}{2}-1\)

\(=\left(1-1\right)+\left(2-2\right)+\left(3-3\right)-\left(\dfrac{1}{2}+\dfrac{1}{2}\right)-\left(\dfrac{2}{3}+\dfrac{1}{3}\right)-\left(\dfrac{3}{4}+\dfrac{1}{4}\right)\)

\(=0+0+0-\dfrac{2}{2}-\dfrac{3}{3}-\dfrac{4}{4}\)

\(=0-1-1-1\)

\(=-3\)

7 tháng 10 2017

a) \(\dfrac{-5}{9}.\dfrac{3}{11}+\dfrac{-13}{18}.\dfrac{3}{11}\)

\(=\dfrac{3}{11}.\left(\dfrac{-5}{9}+\dfrac{-13}{9}\right)\)

\(=\dfrac{3}{11}.\left(-2\right)\)

\(=\dfrac{-6}{11}\)

b) \(\dfrac{11}{2}.2\dfrac{1}{3}-1\dfrac{1}{5}.1\dfrac{1}{2}\)

\(=\dfrac{11}{3}.\dfrac{7}{3}-\dfrac{6}{5}.\dfrac{3}{2}\)

\(=\dfrac{77}{9}-\dfrac{9}{5}\)

\(=\dfrac{385}{45}-\dfrac{81}{45}\)

\(=\dfrac{304}{45}\)

c) \(1\dfrac{1}{9}.\dfrac{2}{145}-4\dfrac{1}{3}-\dfrac{2}{145}+\dfrac{2}{145}\)

\(=\dfrac{10}{9}.\dfrac{2}{145}-\dfrac{8}{3}\)

\(=\dfrac{4}{261}-\dfrac{8}{3}\)

\(=\dfrac{4}{261}-\dfrac{696}{261}\)

\(=-\dfrac{692}{261}\)

d) \(1-\dfrac{1}{2}+2-\dfrac{2}{3}+3-\dfrac{3}{4}+4-\dfrac{1}{4}-3-\dfrac{1}{3}-2-\dfrac{1}{2}-1\)

\(=\left(1-1\right)+\left(2-2\right)+\left(3-3\right)+4-\left(\dfrac{1}{2}+\dfrac{1}{2}\right)-\left(\dfrac{2}{3}+\dfrac{1}{3}\right)-\left(\dfrac{3}{4}+\dfrac{1}{4}\right)\)

\(=0+0+0+4-1-1-1\)

\(=4-3\)

\(=1\)

18 tháng 9 2018

a,=\(\dfrac{\left(2-\dfrac{1}{3}+\dfrac{1}{4}\right).12}{\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right).12}\)+\(\dfrac{\left(\dfrac{3}{5}-\dfrac{1}{4}+\dfrac{1}{2}\right).20}{\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{2}{5}\right).20}\)

=\(\dfrac{24-4+3}{24+2-3}\) +\(\dfrac{12-5+10}{10+15-8}\)(nhân từng số hạng với 12;20)

=\(\dfrac{23}{23}\)+\(\dfrac{17}{17}\) =1+1=2

b,=\(\dfrac{5.\left(\dfrac{1}{79}\right)+5.\left(\dfrac{1}{83}\right)+\dfrac{1}{17}}{17.\left(\dfrac{1}{79}\right)+17.\left(\dfrac{1}{83}\right)+\dfrac{1}{5}}\)=\(\dfrac{5.\left(\dfrac{1}{79}+\dfrac{1}{83}\right)+\dfrac{1}{17}}{17.\left(\dfrac{1}{79}+\dfrac{1}{83}\right)+\dfrac{1}{5}}\)

11 tháng 11 2018

a)= \(\left(\dfrac{4}{9}-\dfrac{17}{18}\right)+\left(\dfrac{17}{14}-\dfrac{5}{7}\right)+\dfrac{11}{125}\)

= \(\dfrac{-1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{11}{125}\)

= 0 + \(\dfrac{11}{125}\)

= \(\dfrac{11}{125}\)

b) \(=\left(1-1\right)+\left(\dfrac{-1}{2}-\dfrac{1}{2}\right)+\left(2-2\right)\) +

\(\left(\dfrac{-2}{3}-\dfrac{1}{3}\right)+\left(3-3\right)+\left(\dfrac{-3}{4}-\dfrac{1}{4}\right)\) + 4

= 0 + (-1) + 0 + (-1) + 0 + (-1) + 4

= -1

c) = \(\dfrac{1}{3}.\dfrac{14}{25}-\dfrac{1}{2}.\dfrac{14}{25}\)

= \(\dfrac{14}{25}.\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\)

= \(\dfrac{14}{25}.\left(\dfrac{-1}{6}\right)\)

= \(\dfrac{-7}{75}\)

d) = \(\left(\dfrac{3}{7}+\dfrac{4}{7}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)\)

= 1 + (-1)

= 0