K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 1 2021

Coi như pt đã cho có 2 nghiệm, khi đó: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m^2+2}{m^2+1}=-2+\dfrac{4}{m^2+1}\\x_1x_2=\dfrac{m}{m^2+1}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2+2=\dfrac{4}{m^2+1}\\x_1x_2=\dfrac{m}{m^2+1}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m^2+1=\dfrac{4}{x_1+x_2+2}\\x_1x_2=\dfrac{m}{m^2+1}=\dfrac{m}{4}\left(x_1+x_2+2\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m^2=\dfrac{2-x_1-x_2}{x_1+x_2+2}\\x_1x_2=\dfrac{m}{4}\left(x_1+x_2+2\right)\end{matrix}\right.\)

\(\Rightarrow x_1x_2=\pm\dfrac{1}{4}\left(x_1+x_2+2\right)\sqrt{\dfrac{2-x_1-x_2}{x_1+x_2+2}}\)

NV
9 tháng 5 2021

Phương trình có 2 nghiệm pb khi:

\(\Delta'=\left(m+1\right)^2-m^2>0\Leftrightarrow2m+1>0\)

\(\Rightarrow m>-\dfrac{1}{2}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x_1+x_2-2}{2}=m\\x_1x_2=m^2\end{matrix}\right.\)

\(\Rightarrow x_1x_2=\left(\dfrac{x_1+x_2-2}{2}\right)^2\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

9 tháng 5 2021

a,Phương trình có 2 nghiệm pb khi: \(\Delta'>0\Rightarrow\left(m+1\right)^2-m^2>0\Leftrightarrow2m+1>0\Leftrightarrow m>\dfrac{-1}{2}\)

 

10 tháng 6 2016

Áp dụng hệ thức Vi-et, ta có : \(\hept{\begin{cases}x_1+x_2=2\left(m-3\right)\\x_1.x_2=-m^2+1\end{cases}\Rightarrow\hept{\begin{cases}x_1+x_2=2m-6\\1-x_1.x_2=m^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m-6\\2\sqrt{1-x_1.x_2}=2m\end{cases}\Rightarrow}\left(x_1+x_2\right)-2\sqrt{1-x_1.x_2}+6=0}\)

23 tháng 4 2020

ĐK; m\(\ne1\)

Đen-ta\(=4m^2-4m^2+4=4>0.\)

vậy pt có 2 nghiệm phân biệt. Áp dụng hệ thức vi-et:

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}=\frac{2m-2+2}{m-1}=2+\frac{2}{m-1}\\x_1x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

\(x_1+x_2-x_1x_2=1\)

vậy nghiệm của pt không phụ thuộc m

Học tốt

a: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-m\right)\)

\(=\left(2m-2\right)^2+4m\)

\(=4m^2-8m+4+4m=4m^2-4m+4\)

\(=4m^2-4m+1+3=\left(2m-1\right)^2+3>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-2\left(m-1\right)\right]}{1}=2\left(m-1\right)=2m-2\\x_1x_2=\dfrac{c}{a}=-\dfrac{m}{1}=-m\end{matrix}\right.\)

\(x_1+x_2+2x_1x_2=2m-2+\left(-2m\right)=-2\)

=>\(x_1+x_2+2\cdot x_1\cdot x_2\) là hệ thức không phụ thuộc vào m

b: Để phương trình có đúng 1 nghiệm âm thì nghiệm còn lại sẽ lớn hơn hoặc bằng 0

=>a*c<=0

=>1*(-m)<=0

=>-m<=0

=>m>=0

c: Để \(\left\{{}\begin{matrix}\left|x_1\right|=\left|x_2\right|\\x_1\cdot x_2< 0\end{matrix}\right.\) thì \(x_1=-x_2\)

=>\(x_1+x_2=0\)

=>2(m-1)=0

=>m-1=0

=>m=1

d: \(\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}\)

\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\left(2m-2\right)^2-4\cdot1\left(-m\right)}\)

\(=\sqrt{4m^2-8m+4+4m}\)

\(=\sqrt{4m^2-4m+4}\)

\(=\sqrt{\left(2m-1\right)^2+3}>=\sqrt{3}\forall m\)

Dấu '=' xảy ra khi 2m-1=0

=>\(m=\dfrac{1}{2}\)

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

10 tháng 6 2016

a)Với m=-3

\(pt\Leftrightarrow2\left(4x+1\right)=0\)

\(\Leftrightarrow4x+1=0\)

\(\Leftrightarrow x=-\frac{1}{4}\)

AH
Akai Haruma
Giáo viên
26 tháng 5 2022

Lời giải:

Để pt có 2 nghiệm thì trước hết đây phải là pt bậc 2. Nghĩa là $m+1\neq 0\Leftrightarrow m\neq -1$

Với $m\neq -1$, để pt có 2 nghiệm thì:

$\Delta'=(m+2)^2-(m-3)(m+1)\geq 0$

$\Leftrightarrow m^2+4m+4-(m^2-2m-3)\geq 0$

$\Leftrightarrow 6m+7\geq 0$

$\Leftrightarrow m\geq \frac{-7}{6}$

Áp dụng hệ thức Viet:

$x_1+x_2=\frac{2(m+2)}{m+1}=\frac{2m+4}{m+1}$

$x_1x_2=\frac{m-3}{m+1}$

$x_1+x_2+kx_1x_2=\frac{2m+4+k(m-3)}{m+1}=\frac{m(k+2)+(4-3k)}{m+1}$

Để hệ thức không phụ thuộc vào m thì $m(k+2)+(4-3k)$ có thể phân tích dưới dạng $t(m+1)$

Tức là: $k+2=4-3k$

$\Leftrightarrow k=\frac{1}{2}$

Khi đó: $x_1+x_2+\frac{1}{2}x_1x_2=\frac{\frac{5}{2}(m+1)}{m+1}=\frac{5}{2}$ 

Đây chính là hệ thức liên hệ giữa $x_1,x_2$ không phụ thuộc $m$

NV
12 tháng 3 2021

Với \(m\ne1\):

a. \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)=1>0\Rightarrow\) pt luôn có 2 nghiệm pb khi \(m\ne1\)

b. Theo hệ thức Viet: \(x_1x_2=\dfrac{m+1}{m-1}\)

\(\Rightarrow\dfrac{m+1}{m-1}=5\Rightarrow m=\dfrac{3}{2}\)

Khi đó: \(x_1+x_2=\dfrac{2m}{m-1}=\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-1}=6\)

c. \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-1}\\x_1x_2=\dfrac{m+1}{m-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2+\dfrac{2}{m-1}\\x_1x_2=1+\dfrac{2}{m-1}\end{matrix}\right.\)

\(\Rightarrow x_1+x_2-x_1x_2=1\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

d. \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{5}{2}=0\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}+\dfrac{5}{2}=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+\dfrac{1}{2}x_1x_2=0\)

\(\Leftrightarrow\dfrac{4m^2}{\left(m-1\right)^2}+\dfrac{m+1}{2\left(m-1\right)}=0\)

\(\Leftrightarrow8m^2+\left(m^2-1\right)=0\)

\(\Leftrightarrow m^2=\dfrac{1}{9}\Rightarrow m=\pm\dfrac{1}{3}\)