Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right).\sqrt{\dfrac{8-2\sqrt{15}}{2}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{25.6}-\sqrt{9.10}\right).\sqrt{\dfrac{\left(\sqrt{5}\right)^2-2\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}{2}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right).\sqrt{\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2}{2}}\)
\(=\left(\sqrt{10}+\sqrt{6}\right).\dfrac{\left|\sqrt{5}-\sqrt{3}\right|}{\sqrt{2}}=\sqrt{2}.\left(\sqrt{5}+\sqrt{3}\right).\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)
a) Ta có: \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{4-\sqrt{15}}\)
\(=\sqrt{8-2\sqrt{15}}\cdot\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}-\sqrt{3}\right)^2\cdot\left(4+\sqrt{15}\right)\)
\(=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\)
\(=32+8\sqrt{15}-8\sqrt{15}-30\)
=2
\(\left(\sqrt{A}+\sqrt{B}\right)^2\)\(=A+B+2\sqrt{AB}\)
\(\left(\sqrt{A}-\sqrt{B}\right)^2\)\(=A-B+2\sqrt{AB}\)
a, \(VT=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)=a-b=VP\) đpcm
b,\(VT=1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}-\dfrac{a^2-a}{a-1}=1-\sqrt{a}+\sqrt{a}-a=1-a=VP\) đpcm
B1:
1. \(\sqrt{12.5}\cdot\sqrt{0.2}\cdot\sqrt{0.1}\) \(=\sqrt{12.5\cdot0.2\cdot0.1}\) \(=\sqrt{0.25}=0.5\)
2.\(\sqrt{48.4}\cdot\sqrt{5}\cdot\sqrt{0.5}\) = \(\sqrt{48.4\cdot5\cdot0.5}\) =\(\sqrt{121}=11\)
B2:
a, \(\left(\sqrt{7}+\sqrt{3}\right)^2=7+2\cdot\sqrt{7}\cdot\sqrt{3}+3=7+2\cdot\sqrt{21}+3\)\(=10+2\sqrt{21}\)
b,\(\left(\sqrt{11}-\sqrt{5}\right)^2=11-2\sqrt{55}+5=16-2\sqrt{55}\)
c,\(\left(\sqrt{x}+\sqrt{y}\right) ^2=x+2\sqrt{xy}+y\)
d.\(\left(\sqrt{13}+\sqrt{7}\right)^2=13+2\sqrt{7}+7=20+2\sqrt{7}\)
e,\(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\)
f,\(\left(\sqrt{3}-1\right)^2=3-2\sqrt{3}+1=4-2\sqrt{3}\)
a. Sửa đề: \(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
biến đổi vế trái :
ta có :\(\left(3+\sqrt{5}\right)\left(\sqrt{10}+\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)
=\(\sqrt{3+\sqrt{5}}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)
=\(\sqrt{3^2-\left(\sqrt{5}\right)^2}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)
=2(\(\sqrt{30+10\sqrt{5}}-\sqrt{6+2\sqrt{5}}\))
=2(\(\sqrt{5}+5-\sqrt{5}-1\))
=2.4=8=VP
=> đpcm
b. Đặt vế trái là A
ta có \(A^2=\sqrt{2}+1-2\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\sqrt{2}-1\)
=\(2\sqrt{2}-2\)
=2\(\left(\sqrt{2}-1\right)\)
=> A=\(\sqrt{2\left(\sqrt{2}-1\right)}\)
vậy VT=VP =>đpcm
Bài 1:
a) Ta có: \(\sqrt{\left(23-15\sqrt{3}\right)^2}\)
\(=\left|23-15\sqrt{3}\right|\)
\(=\left|\sqrt{529}-\sqrt{675}\right|\)
\(=\sqrt{675}-\sqrt{529}\)
\(=15\sqrt{3}-23\)
b) Ta có: \(\sqrt{\left(2-2\sqrt{3}\right)^2}\)
\(=\left|2-2\sqrt{3}\right|\)
\(=2\sqrt{3}-2\)
c) Ta có: \(\sqrt{\left(15-4\sqrt{3}\right)^2}\)
\(=\left|15-4\sqrt{3}\right|\)
\(=15-4\sqrt{3}\)
d) Ta có: \(\sqrt{\left(16-6\sqrt{7}\right)^2}\)
\(=\left|16-6\sqrt{7}\right|\)
\(=\left|\sqrt{256}-\sqrt{252}\right|\)
\(=16-6\sqrt{7}\)
f) Ta có: \(\sqrt{\left(22-8\sqrt{3}\right)^2}\)
\(=\left|22-8\sqrt{3}\right|\)
\(=\left|\sqrt{484}-\sqrt{192}\right|\)
\(=22-8\sqrt{3}\)
g) Ta có: \(\sqrt{\left(9-4\sqrt{2}\right)^2}\)
\(=\left|9-4\sqrt{2}\right|\)
\(=9-4\sqrt{2}\)
h) Ta có: \(\sqrt{\left(13-4\sqrt{3}\right)^2}\)
\(=\left|13-4\sqrt{3}\right|\)
\(=13-4\sqrt{3}\)
i) Ta có: \(\sqrt{\left(7-3\sqrt{3}\right)^2}\)
\(=\left|7-3\sqrt{3}\right|\)
\(=7-3\sqrt{3}\)
\(I=\dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left[\left(\dfrac{a+\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right)\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right]\)
\(=\dfrac{a+2\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left(\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right)\)
\(=\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\cdot\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-b\right)}\)
\(=\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)^2\cdot\left(a-\sqrt{ab}+b\right)}\)
Khi a=16 và b=4 thì \(I=\dfrac{16+4+4\cdot\sqrt{16\cdot4}}{\left(4-2\right)^2\cdot\left(16-\sqrt{16\cdot4}+4\right)}=\dfrac{20+4\cdot8}{4\cdot12}\)
\(=\dfrac{20+32}{48}=\dfrac{52}{48}=\dfrac{13}{12}\)
\(\left(\sqrt{A}+\sqrt{B}\right)^3=\left(\sqrt{A}\right)^3+3.A.\sqrt{B}+3.\sqrt{A}.B+\left(\sqrt{B}\right)^3\)
\(\left(\sqrt{A}-\sqrt{B}\right)^3=\left(\sqrt{A}\right)^3-3.A.\sqrt{B}+3.\sqrt{A}.B-\left(\sqrt{B}\right)^3\)
Toán lớp 9?????