\(\frac{12x^2-6x+4}{x^2+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

(12x^2-6x+4)/(x^2+1)= (3x^2+3+9x^2-6x+1)/(x^2+1)= 3(x^2+1)+(3x-1)^2/(x^2+1)=3+(3x-1)^2

Vì (3x-1)^2 >= 0 => để đạt GTNN thì (3x-1)^2=0. Vậy GTNN là 3 tại x=1/3 ( tự tìm nghiệm x)

19 tháng 12 2016

Đề sai một chút nha bạn : mình sửa bạn thử tham khảo xem đúng không \(P=\frac{12x^2-6x+4}{\left(x-1\right)^2}\)

Mình làm luôn nha 

Giải

Theo bài ra , ta có : 

\(P=\frac{12x^2-6x+4}{\left(x-1\right)^2}=\frac{12\left(x^2-2x+1\right)+18x-8+10x-10+10}{\left(x-1\right)^2}=\frac{12\left(x-1\right)^2+18\left(x-1\right)+10}{\left(x-1\right)^2}=12+\frac{18}{x-1}+\frac{10}{\left(x-1\right)^2}\)

Đặt \(\frac{2}{x-1}=y\)

Đến đây bạn tự làm tiếp nhé 

19 tháng 12 2016

Đề đúng rồi đó bạn #Phát

23 tháng 12 2016

P=(12x^2-6x+4)/(x^2+1)

=(9x^2-6x+1+3x^2+3)/(x^2+1)

=(9x^2-6x+1)/(x^2+1)+(3x^2+3)/(x^2+1)

=(3x-1)^2/(x^2+1)+3(x^2+1)/(x^2+1)

=(3x-1)^2/(x^2+1)+3 >= 3 với mọi x  (do (3x-1)^2/(x^2+1) dương với mọi x)

Vậy minP=3,dấu "=" xảy ra <=> x=1/3

2 tháng 7 2017

a) MTC : \(\left(x+1\right)\left(x^2-x+1\right)\)

Quy đồng :

\(\frac{x-1}{x^3+1}=\frac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\frac{2x}{x^2-x+1}=\frac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\frac{2}{x+1}=\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

b ) MTC : \(10x\left(2y-x\right)\left(2y+x\right)\)

\(\frac{7}{5x}=\frac{7.2.\left(2y-x\right)\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=\frac{-4.10x.\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}=\frac{-40x\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)

c ) MTC : \(\left(x+2\right)^3\)

\(\frac{6x^2}{x^3+6x^2+12x+8}=\frac{6x^2}{\left(x+2\right)^3}\)

\(\frac{3x}{x^2+4x+4}=\frac{3x}{\left(x+2\right)^2}=\frac{3x\left(x+2\right)}{\left(x+2\right)^3}\)

\(\frac{2}{2x+4}=\frac{1}{x+2}=\frac{\left(x+2\right)^2}{\left(x+2\right)^3}\)

17 tháng 8 2020

1) \(8x^3+12x^2+6x+1=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3\)

\(=\left(2x+1\right)^3=\left(2.-2+1\right)^3=-27\)

2) \(8x^3-12x+6x-1=\left(2x\right)^3-3.\left(2x\right)^2.1+3.2x.1^2-1^3\)

\(=\left(2x-1\right)^3=\left(2.-\frac{1}{2}-1\right)^3=-8\)

3)\(\left(1-2x\right)^2-\left(3x+1\right)^2=\left(1-2x+3x+1\right)\left(1-2x-3x-1\right)\)

\(=\left(x+2\right)\left(-5x\right)=\left(-2+2\right).\left(-5.-2\right)=0\)

4) \(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=\left(2x-3y\right)\left[\left(2x\right)^2+2x.3y+\left(3y\right)^2\right]\)

\(=\left(2x\right)^3-\left(3y\right)^3=\left(2.-\frac{1}{2}\right)^3-\left(3.-\frac{1}{3}\right)^3=-1-\left(-1\right)=0\)

17 tháng 8 2020

1) Ta có : \(8x^3+12x^2+6x+1\)

\(=\left(2x+1\right)^3=\left(2.-2+1\right)^3=\left(-3\right)^3=-27\)

b) \(8x^3-12x^2+6x-1\)

\(=\left(2x-1\right)^3=\left[2.\left(-\frac{1}{2}\right)-1\right]^3=-8\)

16 tháng 8 2020

Đây mình trả lời với x là số thực.

1) x^2 - 6x + 10 = (x^2 - 6x + 9) + 1 = (x - 3)^2 + 1. >= 0 + 1 = 1. (Số chính phương luôn >= 0 với mọi x).

Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 3.

2) x^2 - 8x + 19 = (x^2 - 8x + 16) + 3 = (x - 4)^2 + 3 >= 0 + 3 = 3.

Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 4.

3) 3x^2 - 6x + 5 = (3x^2 - 6x + 3) + 2 = 3.(x - 1)^2 + 2 >= 0 + 2 = 2.

Vậy GTNN của biểu thức trên là 2. Dấu "=" xảy ra <=> x = 1.

4) x^2 + x + 1 = (x^2 + x + 1/4) + 3/4 = (x + 1/2)^2 + 3/4 >= 0 + 3/4 = 3/4.

Vậy GTNN của biểu thức trên là 3/4. Dấu "=" xảy ra <=> x = -1/2.

5) x^2 + 10x + 27 = (x^2 + 10x + 25) + 2 = (x + 5)^2 + 2 >= 0 + 2 = 2.

Vậy GTNN của biểu thức trên là 2. Dấu "=" xảy ra <=> x = -5.

6) 4x^2 + 4x + 2 = (4x^2 + 4x + 1) + 1 = (2x + 1)^2 + 1 >= 0 + 1 = 1.

Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = -1/2.

7) 16x^2 + 16x + 25 = (16x^2 + 16x + 4) + 21 = 4.(2x + 1)^2 + 21 >= 0 + 21 = 21.

Vậy GTNN của biểu thức trên là 21. Dấu "=" xảy ra <=> x = -1/2.

8) 9x^2 - 12x + 5 = (9x^2 - 12x + 4) + 1 = (3x - 2)^2 + 1 >= 0 + 1 = 1.

Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 2/3.

9) 49x^2 - 28x + 7 = (49x^2 - 28x + 4) + 3 = (7x - 2)^2 + 3 >= 0 + 3 = 3.

Vậy GTNN của biểu thức là 3. Dấu "=" xảy ra <=> x = 2/7.

10) 30 - 6x + x^2 = (x^2 - 6x + 9) + 21 = (x - 3)^2 + 21 >= 0 + 21 = 21.

Vậy GTNN của biểu thức là 21. Dấu "=" xảy ra <=> x = 3.

11) (1/4).x^2 + x + 3 = ((1/4).x + x + 1) + 2 = ((1/2).x + 1)^2 + 2 >= 0 + 2 = 2.

Vậy GTNN của biểu thức là 2. Dấu "=" xảy ra <=> x = -2.

Lần sau nếu như đề bài yêu cầu tìm GTNN của 1 biểu thức thì bạn tìm xem biểu thức đó >= bao nhiêu nhé, và giá trị đó sẽ là GTNN của biểu thức đã cho. Còn nếu như đề bài yêu cầu tìm GTLN của 1 biểu thức thì bạn làm ngược lại.

18 tháng 4 2019

\(A=x^4+6x^3+13x^2+12x+12\)

     \(=\left(x^4+6x^3+19x^2+30x+25\right)-6x^2-18x-30+17\)

      \(=\left(x^4+6x^3+19x^2+30x+25\right)-6\left(x^2+3x+5\right)+17\)

       \(=\left(x^2+3x+5\right)^2-6\left(x^2+3x+5\right)+17\)

Đặt \(t=x^2+3x+5\)

Khi đó \(A=t^2-6t+17=t^2-2.t.3+9+8=\left(t-3\right)^2+8\ge8\)

Dấu "=" xảy ra <=> t - 3 = 0 <=> t = 3

                                          <=> \(x^2+3x+5=3\Leftrightarrow x^2+3x+2=0\)

                                           \(\Leftrightarrow x^2+x+2x+2=0\)

                                            \(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\)

                                             \(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

Vậy AMin = 8 khi và chỉ khi x = -1 hoặc x = -2

18 tháng 4 2019

CÁC BẠN GIẢI NHANH HỘ NHÚN VỚI

5 tháng 3 2020

Cách mình dài hơn ạ : Violympic toán 8

NV
5 tháng 3 2020

\(A=x^4+6x^3+9x^2+4x^2+12x+12\)

\(=\left(x^2+3x\right)^2+4\left(x^2+3x\right)+4+8\)

\(=\left(x^2+3x+2\right)^2+8\ge8\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)