Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) \(\Rightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=x+y+z\)
\(\Rightarrow\frac{x^2}{y+z}+\frac{xy+xz}{y+z}+\frac{y^2}{z+x}+\frac{xy+yz}{z+x}+\frac{z^2}{x+y}+\frac{zx+zy}{x+y}\)\(=x+y+z\)
\(\Rightarrow P+\frac{x\left(y+z\right)}{y+z}+\frac{y\left(x+z\right)}{x+z}+\frac{z\left(x+y\right)}{x+y}=x+y+z\)
\(\Rightarrow P+x+y+z=x+y+z\Rightarrow P=0\)
Vậy P = 0
Bn đăng bài lên xong nói mình làm được r thế đăng lên làm gì vậy bạn?
a. Để P được xđ thì MT phải khác 0.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-9\ne0\\x^2+3x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)\left(x+3\right)\ne0\\x\left(x+3\right)\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\ne0\end{matrix}\right.\)
b. \(P=\left(\dfrac{x+9}{x^2-9}-\dfrac{3}{x^2+3x}\right).\dfrac{x-3}{x+3}\)
\(P=\left(\dfrac{x+9}{\left(x-3\right)\left(x+3\right)}-\dfrac{3}{x\left(x+3\right)}\right).\dfrac{x-3}{x+3}\)
\(P=\left(\dfrac{x\left(x+9\right)}{x\left(x-3\right)\left(x+3\right)}-\dfrac{3\left(x-3\right)}{x\left(x+3\right)\left(x-3\right)}\right).\dfrac{x-3}{x+3}\)
\(P=\dfrac{x^2+9x-3x+9}{x\left(x-3\right)\left(x+3\right)}.\dfrac{x-3}{x+3}\)
\(P=\dfrac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}.\dfrac{x-3}{x+3}\)
\(P=\dfrac{1}{x}\)
2/
a, \(A=2x^2+6x-5=2\left(x^2+3x-\frac{5}{2}\right)=2\left(x^2+2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{19}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{19}{4}\right]=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow A=\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)
Dấu "=" xảy ra khi x=-3/2
Vậy Amin=-19/2 khi x=-3/2
b,bài này phải tìm min
\(B=\left(2x-x\right)\left(x+4\right)=x\left(x+4\right)=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow B=\left(x-2\right)^2+4\ge4\)
Dấu "=" xảy ra khi x = 2
Vậy Bmin=4 khi x=2
Câu 1:
Tìm max:
Áp dụng BĐT Bunhiacopxky ta có:
\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)
\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)
Vậy \(y_{\max}=10\)
Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)
Tìm min:
Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
Chứng minh:
\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)
\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).
Dấu "=" xảy ra khi $ab=0$
--------------------
Áp dụng bổ đề trên vào bài toán ta có:
\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)
\(\sqrt{5-x}\geq 0\)
\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)
Vậy $y_{\min}=6$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)
Bài 2:
\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)
Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:
\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)
Vậy \(A_{\min}=3989\)
Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)
\(=5x^2-4x^2+3x^2-6x=4x^2-6x\)
\(=4\cdot\left(-\dfrac{3}{2}\right)^2-6\cdot\dfrac{-3}{2}\)
\(=4\cdot\dfrac{9}{4}+6\cdot\dfrac{3}{2}\)
=9+9
=18
Gọi f(x)=(x+1)(x+2)(x+3)(x+4)-6
\(\left[\left(x+1\right)\left(x+4\right)\right]\) x \(\left[\left(x+2\right)\left(x+3\right)\right]\) -6
= (x^2 +5x +4) x (x^2 +5x+6)-6
Gọi t=x^2 +5x+5
=>f(t)=(x^2+5x+4+1) x (x^2+5x+6-1)-6
=>f(t)=(x^2+5x+5)^2-6
Ta có: (x^2+5x+5)^2 \(\ge\) 0 với mọi x
=> (x^2+5x+5)^2 -6 \(\ge\) -6 với mọi x
=>P\(\ge\) -6
=> GTNN của P là -6