Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{1+\sqrt{2}}+\frac{2}{1-\sqrt{2}}\)
\(=\frac{2\left(1+\sqrt{2}\right)+2\left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}\)
\(=4\)
\(A=\frac{2\left(1-\sqrt{2}\right)}{1-2}+\frac{2\left(1+\sqrt{2}\right)}{1-2}\) \(=-2\left(1-\sqrt{2}\right)-2\left(1+\sqrt{2}\right)\)
\(=-4\)
a) Ta có: \(VT=8-2\sqrt{7}\)
\(=7-2\cdot\sqrt{7}\cdot1+1\)
\(=\left(\sqrt{7}-1\right)^2\)
=VP(đpcm)
b) Ta có: \(VT=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{7-2\cdot\sqrt{7}\cdot1+1}-\sqrt{7+2\cdot\sqrt{7}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|\)
\(=\sqrt{7}-1-\left(\sqrt{7}+1\right)\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2=VP\)(đpcm)
a,
\(=\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}=\left|\sqrt{5}-1\right|=\sqrt{5}-1\)
b, \(\sqrt{8-\sqrt{60}}=\sqrt{8-\sqrt{4.15}}=\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{8-2\sqrt{3}\sqrt{5}}=\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{3}\sqrt{5}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\left|\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}\)
2 câu cuối tự làm nhé
a: \(=\dfrac{1}{\sqrt{6}-1+1}-\dfrac{1}{\sqrt{6}+1-1}\)
\(=\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{6}}\)
=0
b: \(=\dfrac{3+\sqrt{7}-3+\sqrt{7}}{2}=\dfrac{2\sqrt{7}}{2}=\sqrt{7}\)
c: \(=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
\(=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}=6\sqrt{2}\)