K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(C=\left(\dfrac{x}{2}-y\right)^3-6\left(y-\dfrac{x}{2}\right)^2+12\left(y-\dfrac{x}{2}\right)-8\)

\(=\left(\dfrac{x}{2}-y\right)^3-3\cdot\left(\dfrac{x}{2}-y\right)^2\cdot2-3\cdot\left(\dfrac{x}{2}-y\right)\cdot2^2-2^3\)

\(=\left(\dfrac{x}{2}-y\right)^3-8-6\left(\dfrac{x}{2}-y\right)\left(\dfrac{x}{2}-y-2\right)\)

\(=\left(\dfrac{x}{2}-y-2\right)\left[\left(\dfrac{x}{2}-y\right)^2+2\left(\dfrac{x}{2}-y\right)+2^2\right]-6\left(\dfrac{x}{2}-y\right)\left(\dfrac{x}{2}-y-2\right)\)

\(=\left(\dfrac{x}{2}-y-2\right)\left[\left(\dfrac{x}{2}-y\right)^2-4\left(\dfrac{x}{2}-y\right)+4\right]\)

\(=\left(\dfrac{x}{2}-y-2\right)^3\)

 

a) Ta có: \(4\left(x-2\right)^2+xy-2y\)

\(=4\left(x-2\right)^2+y\left(x-2\right)\)

\(=\left(x-2\right)\left(4x-8+y\right)\)

b) Ta có: \(x\left(x-y\right)^3-y\left(y-x\right)^2-y^2\left(x-y\right)\)

\(=x\left(x-y\right)^3-y\left(x-y\right)^2-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left[x\left(x-y\right)^2-y\left(x-y\right)-y^2\right]\)

Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+9\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow-9x^2+27x+9x^2+18x+9=15\)

\(\Leftrightarrow45x=6\)

hay \(x=\dfrac{2}{15}\)

AH
Akai Haruma
Giáo viên
15 tháng 8 2021

Lời giải:

a.

$27A=x^3-9x^2+162x-27=(x-3)^3+135x$

$=(303-3)^3+135.303=27040905$

$A=1001515$

b.

$B=2[(x+y)^3-3xy(x+y)]-3[(x+y)^2-2xy]$

$=2(1-3xy)-3(1-2xy)=2-6xy-3+6xy=-1$

c.

$C=x^3+y^3+3xy(x+y)=(x+y)^3=1^3=1$

 

9 tháng 9 2021

\(1,P=\left(x+y+x-y\right)\left(x+y-x+y\right)+2\left(x^2-y^2\right)-4y^2\\ P=4xy+2x^2-6y^2\)

Bài 1: 

\(P=2\left(x+y\right)\left(x-y\right)-\left(x-y\right)^2+\left(x+y\right)^2-4y^2\)

\(=2\left(x^2-y^2\right)-\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)-4y^2\)

\(=2x^2-2y^2-x^2+2xy-y^2+x^2+2xy+y^2-4y^2\)

\(=2x^2+4xy-7y^2\)

10 tháng 7 2021

Bài 1 : 

a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xảy ra khi y = 1/2 

Vậy GTNN B là 3/4 khi y = 1/2 

c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)

Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2 

10 tháng 7 2021

Bài 3 : 

a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )

b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )

Bài 4 : 

\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)

Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)

Bài 5 : 

\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)

\(=2y.2x=4xy=VP\)( đpcm )