Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(A:B:C=2:3:4\Rightarrow\frac{A}{2}=\frac{B}{3}=\frac{C}{4}\)
và \(A+B+C=180^0\)(tổng 3 góc trong tam giác)
Theo tính chất dãy tỉ số bằng nhau ta có ;
\(\frac{A}{2}=\frac{B}{3}=\frac{C}{4}=\frac{A+B+C}{2+3+4}=\frac{180}{9}=20\Rightarrow A=40^0;B=60^0;C=80^0\)
tương tự với b nhé
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có
\(a:b:c=2:3:4\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
và \(a+b+c=180^o\)( tổng các góc của 1 tam giác)
Ap dụng tính chất DTSBN ta có
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{180}{9}=20\)
\(+\frac{a}{2}=20\Rightarrow a=40\)
\(+\frac{b}{3}=20\Rightarrow b=60\)
\(+\frac{c}{4}=20\Rightarrow c=80\)
Vậy.........
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(đ/l tổng ba góc \(\Delta\))
Vì \(A:B:C=2:3:4\)
\(\Rightarrow\frac{A}{2}=\frac{B}{3}=\frac{C}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\Rightarrow\frac{A}{2}=\frac{B}{3}=\frac{C}{4}=\frac{A+B+C}{2+3+4}=\frac{180^o}{9}=20^o\)
\(\Rightarrow\hept{\begin{cases}\widehat{A}=20^o.2=40^o\\\widehat{B}=20^o.3=60^o\\\widehat{C}=20^o.4=80^o\end{cases}}\)