Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a)
\(\int \frac{1}{\cos^4x}dx=\int \frac{\sin ^2x+\cos^2x}{\cos^4x}dx=\int \frac{\sin ^2x}{\cos^4x}dx+\int \frac{1}{\cos^2x}dx\)
Xét \(\int \frac{1}{\cos^2x}dx=\int d(\tan x)=\tan x+c\)
Xét \(\int \frac{\sin ^2x}{\cos^4x}dx=\int \frac{\tan ^2x}{\cos^2x}dx=\int \tan^2xd(\tan x)=\frac{\tan ^3x}{3}+c\)
Vậy :
\(\int \frac{1}{\cos ^4x}dx=\frac{\tan ^3x}{3}+\tan x+c\)
\(\Rightarrow \int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{dx}{\cos^4 x}=\)\(\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|\left ( \frac{\tan ^3 x}{3}+\tan x+c \right )=\frac{44}{9\sqrt{3}}\)
Câu b)
\(\int \frac{(x+1)^2}{x^2+1}dx=\int \frac{x^2+1+2x}{x^2+1}dx=\int dx+\int \frac{2xdx}{x^2+1}\)
\(=x+c+\int \frac{d(x^2+1)}{x^2+1}=x+\ln (x^2+1)+c\)
Do đó:
\(\int ^{1}_{0}\frac{(x+1)^2}{x^2+1}dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|(x+\ln (x^2+1)+c)=\ln 2+1\)
Câu c)
\(\int \frac{x^2+2\ln x}{x}dx=\int xdx+2\int \frac{2\ln x}{x}dx\)
\(=\frac{x^2}{2}+c+2\int \ln xd(\ln x)\)
\(=\frac{x^2}{2}+c+\ln ^2x\)
\(\Rightarrow \int ^{2}_{1}\frac{x^2+2\ln x}{x}dx=\left.\begin{matrix} 2\\ 1\end{matrix}\right|\left ( \frac{x^2}{2}+\ln ^2x +c \right )=\frac{3}{2}+\ln ^22\)
Câu d)
\(\int^{2}_{1} \frac{x^2+3x+1}{x^2+x}dx=\int ^{2}_{1}dx+\int ^{2}_{1}\frac{2x+1}{x^2+x}dx\)
\(=\left.\begin{matrix} 2\\ 1\end{matrix}\right|x+\int ^{2}_{1}\frac{d(x^2+x)}{x^2+x}=1+\left.\begin{matrix} 2\\ 1\end{matrix}\right|\ln |x^2+x|=1+\ln 6-\ln 2\)
\(=1+\ln 3\)
a.
Đặt \(\sqrt{1-x^2}=u\Rightarrow x^2=1-u^2\Rightarrow xdx=-udu\)
\(\left\{{}\begin{matrix}x=0\Rightarrow u=1\\x=1\Rightarrow u=0\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^0_1\left(1-u^2\right).u.\left(-udu\right)=\int\limits^1_0\left(u^2-u^4\right)du=\left(\dfrac{1}{3}u^3-\dfrac{1}{5}u^5\right)|^1_0\)
\(=\dfrac{2}{15}\)
b.
\(\int\limits^2_1\dfrac{dx}{x^2-2x+2}=\int\limits^2_1\dfrac{dx}{\left(x-1\right)^2+1}\)
Đặt \(x-1=tanu\Rightarrow dx=\dfrac{1}{cos^2u}du\)
\(\left\{{}\begin{matrix}x=1\Rightarrow u=0\\x=2\Rightarrow u=\dfrac{\pi}{4}\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{1}{tan^2u+1}.\dfrac{1}{cos^2u}du=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{cos^2u}{cos^2u}du=\int\limits^{\dfrac{\pi}{4}}_0du\)
\(=u|^{\dfrac{\pi}{4}}_0=\dfrac{\pi}{4}\)
1. Đề bài chắc chắn không chính xác, hàm này không thể tìm được nguyên hàm
2.
Trên thực tế, do d và d' vuông góc nên thể tích sẽ được tính bằng:
\(V=\dfrac{1}{6}AB.CD.d\left(d;d'\right)\) trong đó \(d\left(d;d'\right)\) là k/c giữa 2 đường thẳng d và d' (có thể áp dụng thẳng công thức tọa độ)
Còn nguyên nhân dẫn tới công thức tính đó thì:
d có vtcp \(\left(7;5;3\right)\) còn d' có vtcp \(\left(2;-1;-3\right)\) nên d và d' vuông góc
Phương trình d dạng tham số: \(\left\{{}\begin{matrix}x=7+7t'\\y=5+5t'\\z=3t'\end{matrix}\right.\)
Gọi (P) là mp chứa d' và vuông góc d thì pt (P) có dạng:
\(7x+5y+3\left(z-2\right)=0\Leftrightarrow7x+5y+3z-6=0\)
Gọi H là giao điểm (P) và d \(\Rightarrow H\left(\dfrac{105}{83};\dfrac{75}{83};-\dfrac{204}{83}\right)\)
Số xấu dữ quá.
Tính khoảng cách từ điểm H (đã biết) đến đường thẳng d' (đã biết), gọi kết quả là \(h\) (đây thực chất là khoảng cách giữa d và d').
Vậy \(V_{ABCD}=\dfrac{1}{3}.AB.\dfrac{1}{2}.h.CD=...\)
Câu 1:
Ta có \(I_1=\int ^{1}_{0}\frac{4x+2}{x^2+x+1}dx=2\int ^{1}_{0}\frac{2x+1}{x^2+x+1}dx\)
\(=2\int ^{1}_{0}\frac{d(x^2+x+1)}{x^2+x+1}=2.\left.\begin{matrix} 1\\ 0\end{matrix}\right|\ln |x^2+x+1|=2\ln 3\)
Câu 2:
\(I_2=\int ^{1}_{0}\frac{4x+1}{(2-x)^4}dx=\int ^{1}_{0}\frac{4(x-2)+9}{(2-x)^4}dx\)
\(=4\int ^{1}_{0}\frac{dx}{(x-2)^3}+9\int \frac{dx}{(2-x)^4}=4\int ^{1}_{0}\frac{d(x-2)}{(x-2)^3}-9\int ^{1}_{0}\frac{d(2-x)}{(2-x)^4}\)
\(=4\int ^{-1}_{-2}\frac{dt}{t^3}-9\int ^{1}_{2}\frac{dk}{k^4}\) với \(x-2=t; 2-x=k\)
\(=4.\left.\begin{matrix} -1\\ -2\end{matrix}\right|\frac{t^{-3+1}}{-3+1}-9.\left.\begin{matrix} 1\\ 2\end{matrix}\right|\frac{k^{-4+1}}{-4+1}=\frac{9}{8}\)
Câu 3:
Phân số \(\frac{x^2+1}{(x^3+3x)^3}\) không xác định trên \([0;1]\); hàm không liên tục nên không có tích phân.
Câu a)
\(I=\int ^{1}_{0}\frac{x(e^x+1)+1}{e^x+1}dx=\int ^{1}_{0}xdx+\int ^{1}_{0}\frac{dx}{e^x+1}\)
\(=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2}{2}+\int ^{1}_{0}\frac{d(e^x)}{e^x(e^x+1)}=\frac{1}{2}+\left.\begin{matrix} 1\\ 0\end{matrix}\right|\ln\left | \frac{e^x}{e^x+1} \right |\)
\(\Leftrightarrow I=\frac{3}{2}+\ln 2-\ln (e+1)\)
Câu d)
\(I=\int ^{e}_{1}\ln(x+1)d(x)=\int ^{e}_{1}\ln (x+1)d(x+1)\)
Đặt \(\left\{\begin{matrix} u=\ln (x+1)\\ dv=d(x+1)\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{d(x+1)}{x+1}\\ v=x+1\end{matrix}\right.\)
\(\Rightarrow I=\left.\begin{matrix} e\\ 1\end{matrix}\right|(x+1)\ln (x+1)-\int ^{e}_{1}d(x+1)\)
\(=(e+1)\ln \left ( \frac{e+1}{e} \right )-2\ln \left (\frac{2}{e}\right )\)
Câu b)
Đặt \(\tan \frac{x}{2}=t\). Ta có:
\(\left\{\begin{matrix} dt=d\left ( \tan \frac{x}{2} \right )=\frac{1}{2\cos ^2\frac{x}{2}}dx=\frac{t^2+1}{2}dx\rightarrow dx=\frac{2dt}{t^2+1}\\\ \cos x=\frac{1-t^2}{t^2+1}\end{matrix}\right.\)
\( I=\underbrace{\int ^{\frac{\pi}{2}}_{0}\frac{1}{1+\cos x}dx}_{A}+\underbrace{\int ^{\frac{\pi}{2}}_{0}\frac{d(\cos x)}{\cos x+1}}_{B}\)
Có \(B=\int ^{\frac{\pi}{2}}_{0}\frac{d(\cos x+1)}{\cos x+1}=\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\ln |\cos x+1|=-\ln 2\)
\(A=\int ^{1}_{0}\frac{2dt}{(t^2+1)\frac{2}{t^2+1}}=\int ^{1}_{0}dt=1\)
\(\Rightarrow I=A+B=1-\ln 2\)
a) \(\int\dfrac{2dx}{x^2-5x}=\int\left(\dfrac{-2}{5x}+\dfrac{2}{5\left(x-5\right)}\right)dx=-\dfrac{2}{5}ln\left|x\right|+\dfrac{2}{5}ln\left|x-5\right|+C\)
\(\Rightarrow A=-\dfrac{2}{5};B=\dfrac{2}{5}\Rightarrow2A-3B=-2\)
b) \(\int\dfrac{x^3-1}{x+1}dx=\int\dfrac{x^3+1-2}{x+1}dx=\int\left(x^2-x+1-\dfrac{2}{x+1}\right)dx=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2+x-2ln\left|x+1\right|+C\)
\(\Rightarrow A=\dfrac{1}{3};B=\dfrac{1}{2};E=-2\Rightarrow A-B+E=-\dfrac{13}{6}\)
Đặt \(\sqrt{x+1}=t\Rightarrow x=t^2-1\Rightarrow dx=2t.dt\)
\(\left\{{}\begin{matrix}x=0\Rightarrow t=1\\x=4\Rightarrow t=\sqrt{5}\end{matrix}\right.\)
Chà, cận xấu, đề là \(2\sqrt{x+1}\) hay \(\sqrt{2x+1}\) bạn? Nghi ngờ đoạn này
18.
\(F\left(x\right)=\int\limits xe^{x^2}dx\)
Đặt \(t=x^2\Rightarrow xdx=\frac{1}{2}dt\)
\(\Rightarrow F\left(x\right)=\frac{1}{2}\int e^tdt=\frac{1}{2}e^t+C=\frac{1}{2}e^{x^2}+C\)
Ủa bạn có ghi nhầm đáp án A ko? Thế nào thì cả A và D đều ko phải nguyên hàm
19.
\(F\left(x\right)=\int sin^4xcosxdx=\int sin^4x.d\left(sinx\right)=\frac{1}{5}sin^5x+C\)
20.
Đặt \(4x=t\Rightarrow dx=\frac{1}{4}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=2\Rightarrow t=8\end{matrix}\right.\)
\(\int\limits^2_0f\left(4x\right)dx=\int\limits^8_0\frac{1}{4}f\left(t\right)dt=\frac{1}{4}\int\limits^8_0f\left(x\right)dx=\frac{1}{4}.24=6\)
15.
\(t=cosx\Rightarrow sinx.dx=-dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=1\\x=\frac{\pi}{2}\Rightarrow t=0\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^0_1e^t\left(-dt\right)=\int\limits^1_0e^tdt\)
Nếu cần kết quả tích phân thì \(I=e-1\)
16.
\(t=x^2\Rightarrow x.dx=\frac{1}{2}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=2\Rightarrow t=4\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^4_04^t\left(\frac{1}{2}dt\right)=\frac{1}{2}\int\limits^4_04^tdt\)
17.
\(t=x^2+2x\Rightarrow\left(x+1\right)dx=\frac{1}{2}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=1\Rightarrow t=3\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^3_0e^t\left(\frac{1}{2}dt\right)=\frac{1}{2}\int\limits^3_0e^tdt\)
đáp án là:
\(\dfrac{3√2-ln(1+√2)}{8}\)
Nhưng cách tính thì em ko biết! Mong mọi người giúp đỡ ạ!
a=3,b=2,c=8
cộng lại a+b+c=13