Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A, khi \(x\rightarrow1\) thì \(x-2< 0\) nên biểu thức không xác định
\(\Rightarrow\) Giới hạn đã cho ko tồn tại
Đặt \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{n\left(n+1\right)}=A\)
\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)
\(\Leftrightarrow A=\frac{n+1}{n+1}-\frac{1}{n+1}=\frac{n}{n+1}\)
\(L_1=\lim\limits_{x\rightarrow0}\frac{x\left(x^2+3x-2\right)}{x\left(x^4+4\right)}=\lim\limits_{x\rightarrow0}\frac{x^2+3x-2}{x^4+4}=-\frac{1}{2}\)
\(L_2=\lim\limits_{x\rightarrow+\infty}\frac{1-\frac{3}{x^2}+\frac{2}{x^3}}{\left(\frac{4}{x}-2\right)^3}=\frac{1}{\left(-2\right)^3}=-\frac{1}{8}\)
\(L_3=\lim\limits_{x\rightarrow-1}\frac{\left(2x+1\right)\left(x+1\right)}{x\left(x+1\right)}=\lim\limits_{x\rightarrow-1}\frac{2x+1}{x}=1\)
\(L_4=\lim\limits_{x\rightarrow2}\frac{x^2-4x+1}{4-x^2}=\frac{1}{0}=+\infty\)
\(L_5=\lim\limits_{x\rightarrow3}\frac{\sqrt{x+1}-2}{x-2}=\frac{0}{1}=0\)
\(L_6=\lim\limits_{x\rightarrow1}\frac{x+3-\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)\left(\sqrt{x+3}+x+1\right)}=\lim\limits_{x\rightarrow1}\frac{-\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(\sqrt{x+3}+x+1\right)}\)
\(=\lim\limits_{x\rightarrow1}\frac{-\left(x+2\right)}{\left(x+1\right)\left(\sqrt{x+3}+x+1\right)}=\frac{-3}{2.4}=-\frac{3}{8}\)
\(L_7=\lim\limits_{x\rightarrow+\infty}\frac{x^2+x+1-\left(x-1\right)^2}{\sqrt{x^2+x+1}+x-1}\lim\limits_{x\rightarrow+\infty}\frac{3x}{\sqrt{x^2+x+1}+x-1}=\lim\limits_{x\rightarrow+\infty}\frac{3}{\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+1-\frac{1}{x}}=\frac{3}{2}\)
\(L_8=\lim\limits_{x\rightarrow-\infty}\frac{x^2+x+1-\left(3x-2\right)^2}{\sqrt{x^2+x+1}+3x-2}=\lim\limits_{x\rightarrow-\infty}\frac{-8x^2+13x-3}{\sqrt{x^2+x+1}+3x-2}=\lim\limits_{x\rightarrow-\infty}\frac{-8+\frac{13}{x}-\frac{3}{x^2}}{-\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+3-\frac{2}{x}}=\frac{-8}{-1+3}=-4\)
\(A=\lim\limits_{x\rightarrow0}\frac{\left(x+1\right)^{\frac{1}{3}}-1}{\left(2x+1\right)^{\frac{1}{4}}-1}=\lim\limits_{x\rightarrow0}\frac{\frac{1}{3}\left(x+1\right)^{-\frac{2}{3}}}{\frac{1}{2}\left(2x+1\right)^{-\frac{3}{4}}}=\frac{\frac{1}{3}}{\frac{1}{2}}=\frac{2}{3}\)
\(B=\lim\limits_{x\rightarrow7}\frac{\sqrt[3]{4x-1}\sqrt{x-2}}{\sqrt[4]{2x+2}-2}=\frac{3\sqrt{5}}{0}=+\infty\)
\(C=\lim\limits_{x\rightarrow0}\frac{\sqrt{\left(3x+1\right)\left(4x+1\right)}\left(\sqrt{2x+1}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{4x+1}\left(\sqrt{3x+1}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{4x+1}-1}{x}\)
Xét \(\lim\limits_{x\rightarrow0}\frac{\sqrt{ax+1}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\left(ax+1\right)^{\frac{1}{2}}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{2}\left(ax+1\right)^{-\frac{1}{2}}}{1}=\frac{a}{2}\)
\(\Rightarrow C=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}=\frac{9}{2}\)
\(D=\lim\limits_{x\rightarrow0}\frac{\left(1+4x\right)^{\frac{1}{2}}-\left(1+6x\right)^{\frac{1}{3}}}{x^2}=\lim\limits_{x\rightarrow0}\frac{2\left(1+4x\right)^{-\frac{1}{2}}-2\left(1+6x\right)^{-\frac{2}{3}}}{2x}\)
\(D=\lim\limits_{x\rightarrow0}\frac{-2\left(1+4x\right)^{-\frac{3}{2}}+4\left(1+6x\right)^{-\frac{5}{3}}}{1}=-2+4=2\)
\(E=\lim\limits_{x\rightarrow0}\frac{\left(1+ax\right)^{\frac{1}{n}}-\left(1+bx\right)^{\frac{1}{n}}}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{n}\left(1+ax\right)^{\frac{1-n}{n}}-\frac{b}{n}\left(1+bx\right)^{\frac{1-n}{n}}}{1}=\frac{a-b}{n}\)
Vì câu đó ko phải dạng vô định, nó là 1 giới hạn bình thường.
Mình đoán bạn ghi nhầm đề, đề bài là \(\lim\limits_{x\rightarrow7}\frac{\sqrt[3]{4x-1}-\sqrt{x+2}}{\sqrt[4]{2x+2}-2}\) thì hợp lý hơn, đây là 1 giới hạn vô định \(\frac{0}{0}\)
a/ Do \(x\rightarrow-3^+\) nên \(x>-3\Rightarrow x+3>0\Rightarrow\left|x+3\right|=x+3\)
\(\Rightarrow\lim\limits_{x\rightarrow-3^+}\frac{3x+9}{\left|x+3\right|}=\lim\limits_{x\rightarrow-3^+}\frac{3\left(x+3\right)}{x+3}=3\)
b/ \(=\lim\limits_{x\rightarrow0^+}\frac{\sqrt{x}\left(1-3\sqrt{x}\right)}{\sqrt{x}\left(4\sqrt{x}-2\right)}=\lim\limits_{x\rightarrow0^+}\frac{1-3\sqrt{x}}{4\sqrt{x}-2}=-\frac{1}{2}\)
Ở câu này \(x\rightarrow0^+\) có nghĩa \(x>0\), nó chỉ để căn thức xác định, ngoài ra ko có gì đặc biệt hết
c/ Tương tự câu c, cũng chỉ để căn thức xác định \(\left(x< 1\right)\)
\(\lim\limits_{x\rightarrow1^-}\frac{\sqrt{1-x}}{\left(1-x\right)\left(x+4\right)}=\lim\limits_{x\rightarrow1^-}\frac{1}{\sqrt{1-x}\left(x+4\right)}=+\infty\)
d/ Chắc bạn ghi nhầm đề, đây ko phải giới hạn dạng vô định (vì tử khác 0, mẫu bằng 0):
\(x\rightarrow\sqrt{2}^-\Rightarrow x< \sqrt{2}\Rightarrow x^4-4< 0\)
\(\Rightarrow\lim\limits_{x\rightarrow\sqrt{2}^-}\frac{\left|x-2\right|}{x^4-4}=-\infty\)
Bạn tự hiểu là giới hạn tiến đến đâu nhé, làm biếng gõ đủ công thức
a. \(\frac{\sqrt{1+x}-1+1-\sqrt[3]{1+x}}{x}=\frac{\frac{x}{\sqrt{1+x}+1}-\frac{x}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}}{x}=\frac{1}{\sqrt{1+x}+1}-\frac{1}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
b.
\(\frac{1-x^3-1+x}{\left(1-x\right)^2\left(1+x+x^2\right)}=\frac{x\left(1-x\right)\left(1+x\right)}{\left(1-x\right)^2\left(1+x+x^2\right)}=\frac{x\left(1+x\right)}{\left(1-x\right)\left(1+x+x^2\right)}=\frac{2}{0}=\infty\)
c.
\(=\frac{-2}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{\left(2x+1\right)^2}+\sqrt[3]{\left(2x-1\right)\left(2x+1\right)}}=\frac{-2}{\infty}=0\)
d.
\(=x\sqrt[3]{3-\frac{1}{x^3}}-x\sqrt{1+\frac{2}{x^2}}=x\left(\sqrt[3]{3-\frac{1}{x^3}}-\sqrt{1+\frac{2}{x^2}}\right)=-\infty\)
e.
\(=\frac{2x^2-8x+8}{\left(x-1\right)\left(x-2\right)\left(x-2\right)\left(x-3\right)}=\frac{2\left(x-2\right)^2}{\left(x-1\right)\left(x-3\right)\left(x-2\right)^2}=\frac{2}{\left(x-1\right)\left(x-3\right)}=\frac{2}{-1}=-2\)
f.
\(=\frac{2x}{x\sqrt{4+x}}=\frac{2}{\sqrt{4+x}}=1\)