K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

đưa nó vế dạng a^3 + b^3 + c^3 = 3abc

3 tháng 6 2021

Ta có :

    \(x^3\) + \(y^3\) - xy = \(-\dfrac{1}{27}\)

⇔ \(x^3\) + \(y^3\) - xy + \(\dfrac{1}{27}\) = 0

⇔  \(x^3\) + \(y^3\) + \(\dfrac{1^3}{3^3}\) - 3xy.\(\dfrac{1}{3}\) = 0

⇔ (x + y + \(\dfrac{1}{3}\))(\(x^2\) + \(y^2\) + \(\dfrac{1}{9}\) - xy - \(\dfrac{1}{3}x-\dfrac{1}{3}y\)) = 0

TH1 :

x + y + \(\dfrac{1}{3}\) = 0

⇔ x + y = - \(\dfrac{1}{3}\) (loại vì x>0 ; y>0)

TH2 :

\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)\(\dfrac{1}{3}x-\dfrac{1}{3}y\)

⇔ (\(x-\dfrac{1}{3}\))\(^2\) + (\(y-\dfrac{1}{3}\))\(^2\) + (x - y)\(^2\) = 0

⇒ \(x-\dfrac{1}{3}\) = 0       

    \(y-\dfrac{1}{3}\) = 0

    \(x-y\) = 0

⇔ x = y = \(\dfrac{1}{3}\)

Thay x = y = \(\dfrac{1}{3}\) vào \(\dfrac{x}{y^2}\) ta được :

   \(\dfrac{1}{3}\) : \(\dfrac{1}{9}\)

\(\dfrac{1}{3}\) . 9

= 3

\(\dfrac{1}{3}\)\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)

29 tháng 5 2023

a.

Giả sử trong hai số x,y có một số chẵn; vai trò x,y như nhau; không mất tính tổng quát giả sử x chẵn ta có \(\left(xy\right)⋮2\)

Mà \(\left(x^2+y^2+10\right)⋮xy\)  nên \(\left(x^2+y^2+10\right)⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)

Ta có \(xy⋮4\)

Do đó \(\left(x^2+y^2+10\right)⋮4\).

Mà \(x^2⋮4,y^2⋮4\)  nên \(10⋮4\)  (Điều này vô lý)

=> Giả sử trên là sai. Vậy x,y là hai số lẻ.

Đặt \(d=ƯCLN\left(x,y\right)\)

Ta có: \(x=da,b=db\) với a, b, d \(\in N\)* và \(ƯCLN\left(a,b\right)=1\)

Có: \(\left(d^2a^2+d^2b^2+10\right)⋮\left(d^2ab\right)\Rightarrow\left(d^2a^2+d^2b^2+10\right)⋮d^2\Rightarrow10⋮d^2\Rightarrow d=1\)

Vậy \(ƯCLN\left(x,y\right)=1\)

b. Theo đề suy ra \(kxy=x^2+y^2+10\)

Vì x,y là số lẻ nên \(\left(x+1\right)\left(x-1\right)⋮4;\left(y+1\right)\left(y-1\right)⋮4\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x^2-1\right)⋮4\\\left(y^2-1\right)⋮4\end{matrix}\right.\)

Có: \(x^2+y^2+10=x^2-1+y^2-1+12\) chia hết cho 4 nên \(kxy⋮4\)

Mà ƯCLN \(\left(xy,4\right)=1\Rightarrow k⋮4\)

Giả sử trong 2 số x,y có một số chia hết cho 3; vai trò của x, y là như nhau, không mất tính tổng quát giả sử \(x⋮3\) . Ta có \(\left(xy\right)⋮3\)

Mà \(\left(x^2+y^2+10\right)⋮\left(xy\right)\)

Nên \(\left(x^2+y^2+10\right)⋮3\)  \(\Rightarrow\left(y^2+10\right)⋮3\Rightarrow\left(y^2+1\right)⋮3\Rightarrow\) \(y^2\) chia cho 3 dư 2 (Điều này vô lý)

=> Giả sử trên là sai. Vậy x,y là hai số không chia hết cho 3.

\(\RightarrowƯCLN\left(xy,3\right)=1\)\(x^2\) và \(y^2\) chia cho 3 dư 1.

Do đó \(\left(x^2+y^2+10\right)⋮3\)  nên \(kxy⋮3\)  mà \(ƯCLN\left(xy,3\right)=1\Rightarrow k⋮3,k⋮4\)

\(ƯCLN\left(3,4\right)=1.3.4=12\Rightarrow k⋮12\)

Mà \(k\in N\)* nên \(k\ge12\)

4 tháng 10 2021

help me plss

 

Bài 2: 

\(\dfrac{x^4-x^3+3x^2-x+a}{x^2-x+2}\)

\(=\dfrac{x^4-x^3+2x^2+x^2-x+2+a-2}{x^2-x+2}\)

\(=x^2+1+\dfrac{a-2}{x^2-x+2}\)

Để A chia hết cho B thì a-2=0

hay a=2

 

11 tháng 12 2015

Bạn phải ghi dấu ngoặc để mọi người hiểu chứ?