Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 20=21-1=x-1
B=x6-20x5-20x4-20x3-20x2-20x+3
= x6-(x-1)x5-(x-1)x4-(x-1)x3-(x-1)x2-(x-1)x+3
=x6-x6+x5-x5+x4-x4+x3-x3+x2-x2+x+3
=x+3
=21+3
=24
a) Tìm được N = ( 10 x – 1 ) 2 nên x = 10 thì N = 99 2 = 9801.
b) Tìm được P = ( 5 c – d 2 ) 2 nên c = 5; d = 2 thì P = 21 2 = 441
a,
\(A=4(x-2)(x+1)+(2x-4)^2+(x+1)^2\\=[2(x-2)]^2+2\cdot2(x-2)(x+1)+(x+1)^2\\=[2(x-2)+(x+1)]^2\\=(2x-4+x+1)^2\\=(3x-3)^2\)
Thay $x=\dfrac12$ vào $A$, ta được:
\(A=\Bigg(3\cdot\dfrac12-3\Bigg)^2=\Bigg(\dfrac{-3}{2}\Bigg)^2=\dfrac94\)
Vậy $A=\dfrac94$ khi $x=\dfrac12$.
b,
\(B=x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\\=(x^9-1)-(x^7-x^4)-(x^6-x^3)-(x^5-x^2)\\=[(x^3)^3-1]-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1)-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1-x^4-x^3-x^2)\\=(x^3-1)(x^6-x^4-x^2+1)\)
Thay $x=1$ vào $B$, ta được:
\(B=(1^3-1)(1^6-1^4-1^2+1)=0\)
Vậy $B=0$ khi $x=1$.
$Toru$
21=20+1=x+1
Thay 20=x+1 vào biểu thức rồi triệt tiêu
câu sau tương tự
cám ơn bạn!